Refine search
Results 1961-1970 of 7,921
Health toxicity effects of brominated flame retardants: From environmental to human exposure
2021
Feiteiro, Joana | Mariana, Melissa | Cairrão, Elisa
Hexabromocyclododecane (HBCD) and Tetrabromobisphenol A (TBBP-A) are brominated flame retardants widely used in variety of industrial and consumer products (e.g., automobiles, electronics, furniture, textiles and plastics) to reduce flammability. HBCD and TBBPA can also contaminate the environment, mainly water, dust, air and soil, from which human exposure occurs. This constant exposure has raised some concerns against human health. These compounds can act as endocrine disruptors, a property that gives them the ability to interfere with hormonal function and quantity, when HBCD and TBBPA bind target tissues in the body. Studies in human and animals suggest a correlation between HBCD and TBBPA exposure and adverse health outcomes, namely thyroid disorders, neurobehavior and development disorders, reproductive health, immunological, oncological and cardiovascular diseases. However, in humans these effects are still poorly understood, once only a few data evaluated the human health effects. Thus, the purpose of this review is to present the toxicity effects of HBCD and TBBPA and how these compounds affect the environment and health, resorting to data and knowledge of 255 published papers from 1979 to 2020.
Show more [+] Less [-]Linking soil profile N2O concentration with surface flux in a cotton field under drip fertigation
2021
Li, Yanyan | Gao, Xiaopeng | Tenuta, Mario | Gui, Dongwei | Li, Xiangyi | Zeng, Fanjiang
It remains unclear how the source and rate of nitrogen (N) fertilizers affect N₂O concentration and effluxes along the soil profile under the drip-fertigated agricultural system. A plot-based field study was performed in 2017 and 2018 in a cotton field in arid northwestern China, with an objective to elucidate the impact of the applications of conventional urea (Urea), polymer-coated urea (ESN) and stabilized urea (SuperU) at rates of 120 and 240 kg N ha⁻¹ on concentration and efflux of N₂O in the soil profile and its relationship with N₂O surface emissions. The in-situ N₂O concentrations at soil depths of 5, 15, 30 and 60 cm were measured and used to estimate soil profile N₂O effluxes. Estimates of surface N₂O flux using the concentration gradient-based (GM) were compared with those measured using the chamber-based (CM) method. In both years, soil N₂O concentrations at all depths increased in response to basal N application at planting or in-season fertigation events. However, N rate or source did not affect soil N₂O concentrations or effluxes at each depth. Surface emissions of N₂O were mostly associated with that presented in the top layer of 0–15 cm. Surface N₂O efflux determined by GM was poorly or not associated with those of chamber measurements, which was attributed to the low N₂O production restricted by soil moisture condition under the drip-fertigated condition. These results highlight the challenge of applying the enhanced efficiency N fertilizer products in the drip-fertigated agricultural system.
Show more [+] Less [-]Response surface modeling with Box-Behnken design for strontium removal from soil by calcium-based solution
2021
Song, Hojae | Chung, Hyeonyong | Nam, Kyoungphile
Owing to its physicochemical similarity to strontium (Sr), calcium (Ca) was tested as a key component of a soil washing solution for Sr-contaminated soil collected near a nuclear power plant. A four-factor, three-level Box–Behnken experimental design combined with response surface modeling was employed to determine the optimal Sr washing condition for Ca-based solution. The Ca concentration (0.1–1 M), liquid-to-soil ratio (5–20), washing time (0.5–2 h), and pH (2.0–7.0) were tested as the independent variables. From the Box–Behnken design, 27 sets of experimental conditions were selected, and a second-order polynomial regression equation was derived. The significance of the independent parameters and interactions was tested by analysis of variance. Ca concentration was found to be the most influential factor. To determine whether the four variables were independent, three-dimensional (3D) response surface plots were established. The optimal washing condition was determined to be as follows: 1 M Ca, L/S ratio of 20, 1 h washing, and pH = 2. Under this condition, the highest Sr removal efficiency (68.2%) was achieved on a soil contaminated with 90.1 mg/kg of Sr. Results from five-step sequential extraction before and after washing showed that 84.0% and 82.9% of exchangeable and carbonate-bound Sr were released, respectively. In addition, more tightly bound Sr, such as Fe/Mn oxides-bound and organic matter-bound Sr, were also removed (86.2% and 64.5% removal, respectively).
Show more [+] Less [-]Highly effective adsorption of antibiotics from water by hierarchically porous carbon: Effect of nanoporous geometry
2021
Xu, Liheng | Zhang, Mengxue | Wang, Yuanyu | Wei, Fang
Pharmaceutical antibiotics have recently become emerging environmental contaminants. To enhance the removal efficiency of antibiotics in water, hierarchically porous carbons (HPCs) with designed porous patterns are used in both batch and column mode adsorption processes in this study, and the role of their nanoporous geometry in the adsorption dynamics are explored. THPC (HPC with trimodal pores) and DHPC (HPC with bimodal pores) exhibit remarkably superior adsorption performances to the selected antibiotics than those of commercial activated carbon (AC) with similar surface area, especially in column mode adsorption. The effective treatment volumes of the HPC-columns remain up to 8–10 times those of the AC-columns for the removal of tetracycline and 4–6 times for the removal of tylosin. The mass transfer rates of the carbon-based columns present the order of THPC > DHPC > AC. As comparison, the columns based on monomodal mesoporous carbon (MEC) and microporous carbon (MAC) exhibit low effective treatment volumes although their high mass transfer speed. The interconnected meso/macropores in HPCs benefit the intraparticle mass transfer of guest molecules and the accessibility of adsorption sites. The micropores linking to the meso/macropores not only provide adsorption sites but also facilitate adsorption affinity.
Show more [+] Less [-]Photolytic kinetics of pharmaceutically active compounds from upper to lower estuarine waters: Roles of triplet-excited dissolved organic matter and halogen radicals
2021
Hou, Zhichao | Fang, Qi | Liu, Huaying | Li, Yingjie | Zhao, Qun | Zhang, Zhiyu | Lei, Yajie | Tian, Senlin
Photodegradation is a major elimination route of many pharmaceutically active compounds (PhACs) in natural surface waters, yet their photolytic behavior in estuarine waters with salinity gradient change is largely unknown. Herein, sulfamethazine and carbamazepine were taken as representative PhACs to explore the photolytic kinetic differences in Qinzhou Bay estuarine water samples collected from upper to lower reaches. Rapid photodegradation of sulfamethazine was found in lower estuarine water relative to upstream estuarine water; whereas for carbamazepine, photolytic rate was inversely proportional to the salinity of estuarine waters. Experiments with extracted estuarine dissolved organic matter (E-DOM) imply that the multivariate effects of triplet-excited E-DOM (³E-DOM∗) and halide ions are responsible for the enhancement photolysis of sulfamethazine. Radical scavenging experiments suggest that the photolysis enhancement can be ascribed to the contribution of reactive halogen species (RHS), while their contribution to carbamazepine is negligible and ³E-DOM∗ is the dominant reactive species for its photodegradation. This indicates that the reactivity differences with RHS and ³DOM∗ affect the photolytic kinetics of PhACs from upper estuarine waters to lower reaches, which is also supported by a good linear relationship between the ratios of photolytic rates for ten PhACs in E-DOM solution with/without halides and the ratios of the reactivity of these pollutants with RHS and ³DOM∗. These findings show that the different reactivity of PhACs with ³E-DOM∗ and RHS influences the photolytic kinetics in estuarine waters with different salinity, and highlights the photochemical behavior of organic micropollutants from upstream to downstream estuarine waters.
Show more [+] Less [-]Substantial leakage into indoor air from on-site solid fuel combustion in chimney stoves
2021
Du, Wei | Zhuo, Shaojie | Wang, Jinze | Luo, Zhihan | Chen, Yuanchen | Wang, Zhenglu | Lin, Nan | Cheng, Hefa | Shen, Guofeng | Tao, Shu
Exposure to household air pollution (HAP) from solid fuel use (SFU) causes millions of premature deaths globally. Direct leakage from stoves into indoor air is believed to be the main cause of severe HAP. However, previous laboratory-based measurements reported leakage of minimal fractions from wood fuel combustion. Using a newly developed measurement method, on-site measurements were conducted to quantitatively evaluate the leakage of gases and particulate matter from different fuel-stove combinations. The fraction of indoor leakage to the total emission (F) of the measured air pollutants varied from 23 ± 11% to 40 ± 16% for different pollutants and fuel-stove combinations, and these were significantly higher than previously lab-based results. Fuel differences overwhelmed stove differences in influencing F values, with higher values from biomass burning than from coal combustion. The particles had higher F values than gases. Fugitive emission rates (ERs) were log-normally distributed, and biomass burning had higher ERs than coal burning. Indoor PM₂.₅ (fine particulate matter) and CO (carbon monoxide) concentrations measured during the burning period increased by nearly 1–2 orders of magnitude compared to concentrations before or after burning, confirming substantially high indoor leakage from fuel combustion in cookstoves. High fugitive emissions in indoor cookstoves quantified from the present on-site measurements effectively explain the high HAP levels observed in rural SFU households, and call for interventions to improve indoor air quality.
Show more [+] Less [-]Role of miR164 in the growth of wheat new adventitious roots exposed to phenanthrene
2021
Li, Jinfeng | Zhang, Huihui | Zhu, Jiahui | Shen, Yu | Zeng, Nengde | Liu, Shiqi | Wang, Huiqian | Wang, Jia | Zhan, Xinhua
Polycyclic aromatic hydrocarbons (PAHs), ubiquitous organic pollutants in the environment, can accumulate in humans via the food chain and then harm human health. MiRNAs (microRNAs), a kind of non-coding small RNAs with a length of 18–30 nucleotides, regulate plant growth and development and respond to environmental stress. In this study, it is demonstrated that miR164 can regulate root growth and adventitious root generation of wheat under phenanthrene exposure by targeting NAC (NAM/ATAF/CUC) transcription factor. We observed that phenanthrene treatment accelerated the senescence and death of wheat roots, and stimulated the occurrence of new roots. However, it is difficult to compensate for the loss caused by old root senescence and death, due to the slower growth of new roots under phenanthrene exposure. Phenanthrene accumulation in wheat roots caused to generate a lot of reactive oxygen species, and enhanced lipoxygenase activity and malonaldehyde concentration, meaning that lipid peroxidation is the main reason for root damage. MiR164 was up-regulated by phenanthrene, enhancing the silence of NAC1, weakening the association with auxin signal, and inhibiting the occurrence of adventitious roots. Phenanthrene also affected the expression of CDK (the coding gene of cyclin-dependent kinase) and CDC2 (a gene regulating cell division cycle), the key genes in the cell cycle of pericycle cells, thereby affecting the occurrence and growth of lateral roots. In addition, NAM (a gene regulating no apical meristem) and NAC23 may also be related to the root growth and development in wheat exposed to phenanthrene. These results provide not only theoretical basis for understanding the molecular mechanism of crop response to PAHs accumulation, but also knowledge support for improving phytoremediation of soil or water contaminated by PAHs.
Show more [+] Less [-]Global H3K79 di-methylation mediates DNA damage response to PAH exposure in Chinese coke oven workers
2021
Zhang, Zhengbao | Xing, Xiumei | Jiang, Shuyun | Qiu, Chunfang | Mo, Ziying | Chen, Shen | Chen, Liping | Wang, Qing | Xiao, Yongmei | Dong, Guanghui | Zheng, Yuxin | Chen, Wen | Li, Daochuan
Polycyclic aromatic hydrocarbons (PAHs) are the main contaminants of coke oven emissions which can induce serious genetic damage in coke oven workers. Epigenetic alternations play essential roles in the regulation of DNA damage effect of PAHs. Previous studies indicate that H3K79 di-methylation (H3K79me2) is integral in DNA damage repair. However, the potential role of H3K79me2 in DNA damage response (DDR) following PAHs exposure is still unclear. In this study, we recruited 256 male coke oven workers and control workers, and examined H3K79me2 and DNA damage in their peripheral blood lymphocytes (PBLCs). The results showed that global H3K79me2 of coke oven workers was 29.3% less than that of the controls (P < 0.001). The H3K79me2 was negatively correlated with the concentration of urinary 1-hydroxypyrene (1-OHP) (β = -0.235, P < 0.001) and level of genetic damage evaluated by comet assay (βTₐᵢₗ DNA % = -0.313, P < 0.001; βOTM = -0.251, P = 0.008). Consistently, we found that benzo(a)pyrene (BaP) inhibited H3K79me2 in immortalized human bronchial epithelial (HBE) cells in a time-dependent manner. In order to explore the function of H3K79me2 in PAHs DDR, we established histone 3.1/3.3 K79A mutant cells (H3K79 A) to suppress H3K79me2. H3K79 A cells showed more serious DNA damage and decreased cell viability than control cells after BaP treatment. In addition, we also found that the expression of DOT1L, the only methyltransferase in H3K79, was repressed by BaP dose-dependently. DOT1L knockdown resulted in decreased H3K79me2 level and aggravated DNA damage after BaP exposure. This suggests that BaP induces H3K79me2 repression via inhibiting DOT1L expression. In conclusion, these findings indicate that PAH exposure decreases the level of global H3K79me2, which is integral for DNA damage response regulation of PAHs.
Show more [+] Less [-]Volatilization of polycyclic aromatic hydrocarbons (PAHs) over the North Pacific and adjacent Arctic Ocean: The impact of offshore oil drilling
2021
Chen, Afeng | Wu, Xiaoguo | Simonich, Staci L Massey | Kang, Hui | Xie, Zhouqing
Air and seawater samples were collected in 2016 over the North Pacific Ocean (NPO) and adjacent Arctic Ocean (AO), and Polycyclic Aromatic Hydrocarbons (PAHs) were quantified in them. Atmospheric concentrations of ∑₁₅ PAHs (gas + particle phase) were 0.44–7.0 ng m⁻³ (mean = 2.3 ng m⁻³), and concentrations of aqueous ∑₁₅ PAHs (dissolved phase) were 0.82–3.7 ng L⁻¹ (mean = 1.9 ng L⁻¹). Decreasing latitudinal trends were observed for atmospheric and aqueous PAHs. Results of diagnostic ratios suggested that gaseous and aqueous PAHs were most likely to be related to the pyrogenic and petrogenic sources, respectively. Three sources, volatilization, coal and fuel oil combustion, and biomass burning, were determined by the PMF model for gaseous PAHs, with percent contributions of 10%, 44%, and 46%, respectively. The 4- ring PAHs underwent net deposition during the cruise, while some 3- ring PAHs were strongly dominated by net volatilization, even in the high latitude Arctic region. Offshore oil/gas production activities might result in the sustained input of low molecular weight 3- ring PAHs to the survey region, and further lead to the volatilization of them. Compared to the gaseous exchange fluxes, fluxes of atmospheric dry deposition and gaseous degradation were negligible. According to the extrapolated results, the gaseous exchange of semivolatile aromatic-like compounds (SALCs) may have a significant influence on the carbon cycling in the low latitude oceans, but not for the high latitude oceans.
Show more [+] Less [-]Structural and functional analysis of the inhibition of equine glutathione transferase A3-3 by organotin endocrine disrupting pollutants
2021
Škerlová, Jana | Ismail, Aram | Lindström, Helena | Sjödin, Birgitta | Mannervik, Bengt | Stenmark, Pål
Organotin compounds are highly toxic environmental pollutants with neurotoxic and endocrine-disrupting effects. They are potent inhibitors of glutathione transferases (GSTs), thus impeding their detoxication and antioxidant functions. Several GSTs, including equine GST A3-3 (EcaGST A3-3), exhibit steroid double-bond isomerase activity and are involved in the biosynthesis of testosterone and progesterone. We have performed enzyme kinetics analyses of the inhibition of EcaGST A3-3 by organotin compounds. We have also solved crystal structures of EcaGST A3-3 in complexes with glutathione, and with glutathione together with covalently bound triethyltin. Our structural data indicate that the tin atom forms strong bonds with a covalent character not only with the glutathione, but also with a tyrosyl residue of the enzyme itself, thereby preventing the release of the glutathione-organotin adduct and completely blocking the enzyme function. This work presents a structural basis for the general mechanism of GST inhibition by organotin compounds and contributes to the understanding of their neurotoxic and endocrine disrupting effects.
Show more [+] Less [-]