Refine search
Results 2151-2160 of 4,033
Abattoir Wastewater Irrigation Increases the Availability of Nutrients and Influences on Plant Growth and Development
2016
Matheyarasu, Raghupathi | Bolan, Nanthi S. | Naidu, R.
This study evaluated the effects of abattoir wastewater irrigation on plant growth and development. The soils used in this study were collected from Primo Smallgoods Abattoir (Port Wakefield, South Australia) at different sites such as currently irrigated (CI), currently not irrigated (CNI) and soil outside the irrigation area as control (CTRL). A completely randomised block design was employed for the plant growth experiment, where four crops (Pennisetum purpureum, Medicago sativa, Sinapis alba and Helianthus annuus) were grown separately on three different soils (CI, CNI and CTRL) in plastic pots. Two types of water (tap water and wastewater) and two loadings were applied throughout the planting period based on the field capacity (FC 100 and 150 %). The overall dry matter yield was compared between the soils and treatments. Under wastewater irrigation, among the four species grown in the CI soil, P. purpureum (171 g) and H. annuus (151 g) showed high biomass yields, followed by S. alba (115 g) and M. sativa (31 g). The plants grown under tap water showed about 70 % lower yields compared to the abattoir wastewater irrigation (AWW). Similar trends in the biomass yields were observed for CNI and CTRL soils under the two water treatments, with the biomass yields in the following order CI > CNI > CTRL soils. The results confirm the beneficial effects of AWW at the greenhouse level. However, a proper cropping pattern and wastewater irrigation management plan is essential to utilise the nutrients available in the wastewater-irrigated land treatment sites. The increase in fertility is evident from the effects of wastewater on biomass growth and also the abundance of nutrients accumulated in plants. A mass balance calculation on the applied, residual and the plant-accumulated nutrients over a few cropping periods will help us in understanding the nutrient cycling processes involved in the abattoir-irrigated land treatment sites, which will serve as an effective tool for the environmental management.
Show more [+] Less [-]Synergy Between Diazinon and Nonylphenol in Toxicity During the Early Development of the Rhinella arenarum Toad
2016
Aronzon, Carolina Mariel | Svartz, Gabriela Verónica | Coll, Cristina Silvia Pérez
Diazinon is an extensively applied organophosphate pesticide, and nonylphenol is one of the major degradation products of nonylphenol polyethoxylates which are commonly used as surfactant in pesticide formulations. Both pollutants are widely distributed and often coexist in agroecosystems, where they might cause toxic effects to wild biota. This study assessed single and joint toxicity of binary mixtures of these organic compounds on the early development of Rhinella arenarum by means of a standardized test. Joint toxicity of diazinon/nonylphenol mixtures were assessed in embryos and larvae exposed to three different proportions at different exposure times. Embryo and larval toxicity was time-dependent, and larvae were significantly more sensitive than embryos to both compounds. For both embryos and larvae, nonylphenol was between 11 and 18 times more toxic than diazinon. Joint toxicity of the chemicals showed a tendency to be significantly higher than the predicted by additivity effects highlighting the threat that diazinon/nonylphenol mixtures represent for Rhinella arenarum populations.
Show more [+] Less [-]Application of an integrated biomarker response index to assess ground water contamination in the vicinity of a rare earth mine tailings site
2016
Si, Wantong | He, Xiaoying | Li, Ailing | Liu, Li | Li, Jisheng | Gong, Donghui | Liu, Juan | Liu, Jumei | Shen, Weishou | Zhang, Xuefeng
We utilized a multi-biomarker approach (Integrated Biomarker Response version 2, IBRv2) to investigate the scope and dispersion of groundwater contamination surrounding a rare earth mine tailings impoundment. Parameters of SD rat included in our IBRv2 analyses were glutathione levels, superoxide dismutase, catalase, and glutathione peroxidase activities, total anti-oxidative capacity, chromosome aberration, and micronucleus formation. The concentration of 20 pollutants including Cl⁻, SO₄²⁻, Na⁺, K⁺, Mg²⁺, Ca²⁺, TH, CODMₙ, As, Se, TDS, Be, Mn, Co, Ni, Cu, Zn, Mo, Cd, and Pb in the groundwater were also analyzed. The results of this study indicated that groundwater polluted by tailings impoundment leakage exhibited significant ecotoxicological effects. The selected biomarkers responded sensitively to groundwater pollution. Analyses showed a significant relationship between IBRv2 values and the Nemerow composite index. IBRv2 could serve as a sensitive ecotoxicological diagnosis method for assessing groundwater contamination in the vicinity of rare earth mine tailings. According to the trend of IBRv2 value and Nemerow composite index, the maximum diffusion distance of groundwater pollutants from rare earth mine tailings was approximately 5.7 km.
Show more [+] Less [-]Thermal and spectroscopic analysis of organic matter degradation and humification during composting of pig slurry in different scenarios
2016
Martín-Mata, J. | Lahoz-Ramos, C. | Bustamante, M. A. | Marhuenda-Egea, F. C. | Moral, R. | Santos, A. | Sáez, J. A. | Bernal, M. P.
In this work, different analytical techniques (thermal analysis, ¹³C cross-polarization magic angle spinning (CPMAS) NMR and Fourier transform infrared (FT-IR) spectroscopy) have been used to study the organic matter changes during the co-composting of pig slurry with cotton gin waste. To ensure the validity of the findings, the composting process was developed in different scenarios: under experimental pilot plant conditions, using the static pile system, and under real conditions on a pig farm, using the turning pile system. Also, the thermal stability index (R1) was determined before and after an extraction with water, to evaluate the effect of eliminating water-soluble inorganic salts on the thermal analysis. The results of the thermal methods showed the degradation of the most labile organic matter during composting; R1 increased during composting in all piles, without any influence of the presence of water-soluble inorganic ions in the sample. The NMR showed a decrease in the abundance of the carbohydrate molecules and an increase in the aliphatic materials during composting, due to a concentration effect. Also, FT-IR spectroscopy was a useful technique to study the trends of polysaccharides and nitrate, as indicators of organic matter transformations during composting.
Show more [+] Less [-]International food trade reduces environmental effects of nitrogen pollution in China
2016
Shi, Yaxing | Wu, Shaohua | Zhou, Shenglu | Wang, Chunhui | Chen, Hao
The globalization of agricultural trade has dramatically altered global nitrogen flows by changing the spatial pattern of nitrogen utilization and emissions at a global scale. As a major trading country, China uses a large amount of nitrogen, which has a profound impact on global nitrogen flows. Using data on food production and trade between China and 26 other countries and regions, we calculated nitrogen inputs and outputs in food production ecosystem in each country. We estimated nitrogen flows in international food trade and analyzed their impact on nitrogen pollution in China. We divided nitrogen flows into embodied and virtual nitrogen flows. Embodied nitrogen is taken up by the plant and incorporated into the final food product, whereas virtual nitrogen is lost to the environment throughout the food production process and is not contained in the final food product. Our results show that China mainly imports food products from America and Asia, accounting for 95 % of all imported food. Asia (mainly Japan) and Europe are the main exporters of food from China, with Japan and the EU accounting for 17 and 10 % of all exported food, respectively. Total nitrogen inputs and outputs in food production in China were 55,400 and 61,000 Gg respectively, which were much higher than in other countries. About 1440 and 950 Gg of embodied and virtual nitrogen respectively flow into China through the food trade, mainly from food-exporting countries such as the USA, Argentina, and Brazil. Meanwhile, 177 and 160 Gg of embodied and virtual nitrogen respectively flow out of China from the export of food products, mainly to Japan. China’s net food imports have reduced 720 and 458 Gg for nitrogen utilization and outputs, respectively, which accounted for 1.3 and 0.78 % of total nitrogen inputs and outputs in China. These results suggest that food trade in China has a profound effect on nitrogen flows and has greatly reduced environmental impacts on nitrogen pollution in China.
Show more [+] Less [-]Thallium Toxicity in Mediterranean Horticultural Crops (Fragaria vesca L., Mentha pulegium L., Ocimum basilicum L.)
2016
Ferronato, Chiara | Carbone, Serena | Vianello, Gilmo | Vittori Antisari, Livia
Thallium is a non-essential, toxic element that concerns mining areas and their acid drainage effluents. Minerals containing thallium can be eroded, and Tl can be leached into soil, thus being spread into the environment and adsorbed by plants and living organisms, entering the food chain, and inducing serious toxicity problems. In this study, the Tl cycle was observed and analyzed on basil, mint, and strawberry cultivated in a greenhouse and irrigated with Tl-contaminated water. The Tl content in both bulk and rhizosphere soils as well as thallium present in different plant organs were analyzed during the experiment, with the aim of revealing both physiological symptoms and metabolic disorders linked to the Tl toxicity. The mechanism of plants to exclude, uptake, translocate, and tolerate Tl varied among the different species, and both the bioconcentration factor (BCF) and the translocation index (TI) were calculated to highlight a different response to Tl toxicity of strawberry, mint, and basil. Basil is the less tolerant species, while mint and strawberry showed different self-defense mechanism against Tl adsorption and translocation.
Show more [+] Less [-]Growth and Cadmium Accumulation of Solanum nigrum L. Seedling were Enhanced by Heavy Metal-Tolerant Strains of Pseudomonas aeruginosa
2016
Shi, Peili | Zhu, Kangxing | Zhang, Yuxiu | Chai, Tuanyao
Some heavy metal-tolerant bacteria recognized as plant growth-promoting bacteria (PGPB) could improve plant growth. Here, the growth and Cd accumulation of Solanum nigrum seedling inoculated by soaking the roots in a dilute suspension of the Cd-tolerant strains ZGKD5 or ZGKD2 were investigated. The results showed that both ZGKD5 and ZGKD2 exhibited the characterization of producing IAA, siderophores, ammonia, and biosurfactant, and solubilizing phosphate and fixing nitrogen. The siderophores produced by both strains could chelate various heavy metals, such as Cu, Cd, Zn, and Ni. The shoot height, root length, number of fibrous root, and dry weight of S. nigrum seedling were significantly increased by inoculation with ZGKD5 or ZGKD2 in the absence or presence of Cd stress. The Cd concentration and translocation from root to shoot in seedlings were remarkably increased, indicating that both strains could improve the growth and Cd phytoextraction of S. nigrum. The activities of SOD, POD, CAT, and APX in both inoculated and uninoculated plants were increased under Cd stress, indicating that these antioxidative enzymes could alleviate oxidative stress induced by Cd. Furthermore, activities of antioxidative enzyme in inoculated plants exposed to Cd stress was lower than that in uninoculated Cd-stressed plants, which might be due to the decreasing metabolism caused by high levels of Cd. These results indicated that strains ZGKD5 and ZGKD2 are PGPB and have the potential for improving the phytoremediation of S. nigrum in Cd-contaminated farmland soil.
Show more [+] Less [-]Enhanced phytoremediation of cadmium polluted water through two aquatic plants Veronica anagallis-aquatica and Epilobium laxum
2016
Ahmad, Ayaz | Hadi, Fazal | Ali, Nasir | Jan, Amin Ullah
Toxic metal-contaminated water is a major threat to sustainable agriculture and environment. Plants have the natural ability to absorb and concentrate essential elements in its tissues from water solution, and this ability of plants can be exploited to remove heavy/toxic metals from the contaminated water. For this purpose, two plants Veronica anagallis-aquatica and Epilobium laxum were hydroponically studied. The effect of different fertilizers (NPK) and plant growth regulators (GA₃ and IAA) were evaluated on growth, biomass, free proline, phenolics, and chlorophyll contents, and their role in Cd phytoaccumulation was investigated. Results showed that in both plants, fertilizer addition to media (treatment T4) produced the highest significant increase in growth, biomass (fresh and dry), cadmium concentration, proline, phenolics, and chlorophyll concentrations. The significant effect of GA₃ in combination with NPK foliar spray (treatment T12) was observed on most of the growth parameters, Cd concentration, and proline and phenolic contents of the plants. The free proline and total phenolics showed positive correlation with cadmium concentration within plant tissues. Proline showed significantly positive correlation with phenolic contents of root and shoot. Veronica plant demonstrated the hyperaccumulator potential for cadmium as bioconcentration factor (BCF >1) which was much higher than 1, while Epilobium plant showed non-hyperaccumulator potential. It is recommended for further study to investigate the role of Veronica plant for other metals and to study the role of phenolics and proline contents in heavy metal phytoextraction by various plant species.
Show more [+] Less [-]Potential for Reducing On-Farm Greenhouse Gas and Ammonia Emissions from Dairy Cows with Prolonged Dietary Tannin Additions
2016
Duval, Benjamin D. | Aguerre, Matias | Wattiaux, Michel | Vadas, Peter A. | Powell, J Mark
Dairy cows are responsible for significant emissions of enteric methane (CH₄) and produce nitrous oxide (N₂O) and ammonia (NH₃) gas from manure. As an abatement strategy, we explored the effects of long-term condensed tannin (Quebracho and chestnut extracts) addition to dairy cow diets. Previous studies have demonstrated that tannins in cow diets reduce methane and ammonia efflux, but none have done so over a >1-month time period. A modified stanchion barn equipped with gas analysis instrumentation measured CH₄, N₂O, and NH₃ fluxes into and from the barn, at the onset of the experiment, and 45 and 90 days after feeding groups of lactating dairy cows a control diet or two levels of tannin extract at 0.45 and 1.8 % of dietary dry matter. Few statistical differences among treatments were observed, likely a consequence of high variability and low sample size necessary for conducting a study of this duration. However, on a per-cow basis, low and high tannin diets lowered CH₄ emissions by 56 g cow⁻¹ day⁻¹ and by 48 g cow day⁻¹, respectively. Diet tannin additions lowered CH₄ (33 %), NH₃ (23 %), and N₂O (70 %) per unit milk corrected emissions in the high tannin treatment compared to the control at the end of the experiment, without significant loss in milk production. These results suggest that relatively low concentrations of diet tannin additions can reduce ruminant CH₄ and gaseous N emissions from manure. The tannin effect observed after 90 days is a starting point for considering tannin additions as a potential long-term strategy for improving the environmental footprint of milk production.
Show more [+] Less [-]Factors and Mechanisms Affecting Seasonal Changes in the Prevalence of Microbiological Indicators of Water Quality and Nutrient Concentrations in Waters of the Białka River Catchment, Southern Poland
2016
Lenart-Boroń, Anna | Wolanin, Anna A. | Jelonkiewicz, Łukasz | Żelazny, Mirosław
This 3-year study was aimed to understand the factors and mechanisms that cause the temporal changes in the concentration of microbiological indicators of water quality and nutrient concentration in selected sites of the Białka river catchment (southern Poland) situated in direct vicinity of the largest ski station in the region. The analysis comprised 35 sampling campaigns conducted in five sites. Water temperature, pH, and electrical conductivity were measured during sampling, laboratory analyses included determination of the selected nutrients content (NH₄, NO₃, NO₂, PO₄); and the number of mesophilic and psychrophilic bacteria, coliforms, fecal coliforms, and Escherichia coli. Based on the cluster analysis, the collected samples were grouped into three to four groups, depending on the most characteristic features. Seasonal variation was evident, showing the predominance of either anthropogenic or natural-environment factors, depending on the considered season. On the other hand, principal component analysis revealed clear effect of various forms of land use in different sites.
Show more [+] Less [-]