Refine search
Results 411-420 of 6,536
The neonicotinoid thiacloprid causes transcriptional alteration of genes associated with mitochondria at environmental concentrations in honey bees
2020
Fent, Karl | Schmid, Michael | Hettich, Timm | Schmid, Simon
Thiacloprid is widely used in agriculture and may affect pollinators. However, its molecular effects are poorly known. Here, we report the global gene expression profile in the brain of honey bee foragers assessed by RNA-sequencing. Bees were exposed for 72 h to nominal concentrations of 25 and 250 ng/bee via sucrose solution. Determined residue concentrations by LC-MS/MS were 0.59 and 5.49 ng/bee, respectively. Thiacloprid exposure led to 5 and 71 differentially expressed genes (DEGs), respectively. Nuclear genes encoding mitochondrial ribosomal proteins and enzymes involved in oxidative phosphorylation, as well as metabolism enzymes and transporters were altered at 5.49 ng/bee. Kyoto Encylopedia of Genes and Genomes (KEGG) analysis revealed that mitochondrial ribosome proteins, mitochondrial oxidative phosphorylation, pyrimidine, nicotinate and nicotinamide metabolism and additional metabolic pathways were altered. Among 21 genes assessed by RT-qPCR, the transcript of farnesol dehydrogenase involved in juvenile hormone III synthesis was significantly down-regulated. Transcripts of cyp6a14-like and apolipophorin-II like protein, cytochrome oxidase (cox17) and the non-coding RNA (LOC102654625) were significantly up-regulated at 5.49 ng/bee. Our findings indicate that thiacloprid causes transcriptional changes of genes prominently associated with mitochondria, particularly oxidative phosphorylation. This highlight potential effects of this neonicotinoid on energy metabolism, which may compromise bee foraging and thriving populations at environmentally relevant concentrations.
Show more [+] Less [-]Predicting zebrafish spatial avoidance triggered by discharges of dairy wastewater: An experimental approach based on self-purification in a model river
2020
Silva, Daniel C.V.R. | Queiroz, Lucas G. | Marassi, Rodrigo J. | Araújo, Cristiano V.M. | Bazzan, Thiago | Cardoso-Silva, Sheila | Silva, Gilmar C. | Müller, M. | Silva, Flávio T. | Montagner, Cassiana C. | Paiva, Teresa C.B. | Pompêo, Marcelo L.M.
Wastewater discharges from dairy industries can cause a range of harmful effects in aquatic ecosystems, including a decline in biodiversity due to species evasion. Therefore, it is important to know the purification potential of rivers for the removal of pollutants released in dairy wastewater (DWW). The hypothesis adopted in this work was that the release of DWW into stretches of the Ribeirão dos Pombos River (São Paulo State, Brazil) might trigger an avoidance response, resulting in fish migrating to other regions, with the response being greater when the self-cleaning potential of the river is smaller. Therefore, the goals of the present study were to: (i) investigate how land use and seasonality of the rainfall regime influence the quality of the water in different areas of the river (P1: river source; P2: urban region; P3: rural region); (ii) assess the potential of the river to purify DWW; and (iii) evaluate the potential toxicity and repellency of DWW to the freshwater fish Danio rerio, using acute toxicity (mortality) and non-forced avoidance tests, respectively. P1 was shown to be the most preserved area. The chemical composition of the river varied seasonally, with higher concentrations of Cl⁻ and SO₄²⁻ at P3 during the rainy period. The river purification potential for DWW was higher at P2, due to greater microbiological activity (associated with higher BOD). The DWW was more acutely toxic in water from P2. The avoidance response was strongly determined by the concentration of DWW, especially for water from P2. The high capacity for self-cleaning at P2 did not seem sufficient to maintain the stability of the ecosystem. Finally, the non-forced exposure system proved to be a suitable approach that can assist in predicting how contaminants may affect the spatial distributions of organisms.
Show more [+] Less [-]Multigenerational exposure to TiO2 nanoparticles in soil stimulates stress resistance and longevity of survived C. elegans via activating insulin/IGF-like signaling
2020
Hu, Zhao | Hou, Jie | Zhu, Ya | Lin, Daohui
With increasing release of nanoparticles (NPs) into the environment, soil organisms likely suffer from high dose and long duration of NPs contamination, while the effect of NPs across multiple generations in soil is rarely studied. Herein, we investigated how multigenerational exposure to different crystal forms (anatase, rutile, and their mixture) of TiO₂ NPs (nTiO₂) affected the survival, behavior, physiological and biochemical traits, and lifespan of nematodes (C. elegans) in a paddy soil. The soil property changed very slightly after being spiked with nTiO₂, and the toxicities of three nTiO₂ forms were largely comparable. The nTiO₂ exposure adversely influenced the survival and locomotion of nematodes, and increased intracellular reactive oxygen species (ROS) generation. Interestingly, the toxic effect gradually attenuated and the lifespan of survived nematodes increased from the P0 to F3 generation, which was ascribed to the survivor selection and stimulatory effect. The lethal effect and the increased oxidative stress may continuously screen out offspring possessing stronger anti-stress capabilities. Moreover, key genes (daf-2, age-1, and skn-1) in the insulin/IGF-like signaling (IIS) pathway actively responded to the nTiO₂ exposure, which further optimized the selective expression of downstream genes, increased the antioxidant enzyme activities and antioxidant contents, and thereby increased the stress resistance and longevity of survived nematodes across successive generations. Our findings highlight the crucial role of bio-responses in the progressively decreased toxicity of nTiO₂, and add new knowledge on the long-term impact of soil nTiO₂ contamination.
Show more [+] Less [-]Arsenic concentrations, distributions and bioaccessibilities at a UNESCO World Heritage Site (Devon Great Consols, Cornwall and West Devon Mining Landscape)
2020
Braungardt, Charlotte | Chen, Xiaqing | Chester-Sterne, Daniel | Quinn, James G.A. | Turner, Andrew
Devon Great Consols (DGC) is a region in south west England where extensive mining for Cu, Sn and As took place in the nineteenth century. Because of its historical and geological significance, DGC has protected status and is part of the Cornwall and West Devon Mining Landscape UNESCO World Heritage Site. Recently, the region was opened up to the public with the construction or redevelopment of various trails, tracks and facilities for walking, cycling and field visits. We used portable x-ray fluorescence spectrometry to measure, in situ, the concentrations of As in soils and dusts in areas that are accessible to the public. Concentrations ranged from about 140 to 75,000 μg g⁻¹ (n = 98), and in all but one case exceeded a Category 4 Screening Level for park-type soil of 179 μg g⁻¹. Samples returned to the laboratory and fractionated to <63 μm were subjected to an in vitro assessment of both oral and inhalable bioaccessibility, with concentrations ranging from <10 to 25,500 μg g⁻¹ and dependent on the precise nature and origin of the sample and the physiological fluid applied. Concentrations of As in PM₁₀ collected along various transects of the region averaged over 30 ng m⁻³ compared with a typical concentration in UK air of <1 ng m⁻³. Calculations using default EPA and CLEA estimates and that factor in for bioaccessibility suggest a 6-h visit to the region results in exposure to As well in excess of that of minimum risk. The overall risk is exacerbated for frequent visitors to the region and for workers employed at the site. Based on our observations, we recommend that the remodelling or repurposing of historical mine sites require more stringent management and mitigation measures.
Show more [+] Less [-]Wastewater treatment plant upgrade induces the receiving river retaining bioavailable nitrogen sources
2020
Wang, Qiaojuan | Liang, Jinsong | Zhao, Chen | Bai, Yaohui | Liu, Ruiping | Liu, Huijuan | Qu, Jiuhui
Currently, wastewater treatment plant (WWTP) upgrades have been implemented in various countries to improve the water quality of the receiving ecosystems and protect aquatic species from potential deleterious effects. The impact of WWTP upgrades on biological communities and functions in receiving waters is a fundamental issue that remains largely unaddressed, especially for microbial communities. Here, we selected two wastewater-dominant rivers in Beijing (China) as study sites, i.e., one river receiving water from an upgraded WWTP to explore the impacts of upgrade on aquatic ecosystems and another river receiving water from a previously upgraded WWTP as a reference. After a five-year investigation, we found that WWTP upgrade significantly decreased total organic nitrogen (N) in the receiving river. As a biological response, N-metabolism-related bacterioplankton are accordingly altered in composition and tend to intensively interact according to the network analysis. Metagenomic analysis based on the N-cycling genes and metagenomic-assembled genomes revealed that WWTP upgrade decreased the abundance of nitrifying bacteria but increased that of denitrifying and dissimilatory nitrate reduction to ammonium (DNRA) bacteria in the receiving river, according to their marker gene abundances. After calculation of the ratios between DNRA and denitrifying bacteria and quantification of genes/bacteria related to ammonium cycling, we deduced the changes in N-metabolism-related bacteria are likely an attempt to provide enough bioavailable N for plankton growth as conservation of ammonium was enhanced in receiving river after WWTP upgrade.
Show more [+] Less [-]Nitrate repletion during spring bloom intensifies phytoplankton iron demand in Yangtze River tributary, China
2020
Nwankwegu, Amechi S. | Li, Yiping | Huang, Yanan | Wei, Jin | Norgbey, Eyram | Ji, Daobin | Pu, Yashuai | Nuamah, Linda A. | Yang, Zhengjian | Jiang, Yufeng | Paerl, Hans W.
Most aquatic systems show characteristic seasonal fluctuations in the total nutrient pool supporting primary productivity. The nutrient dynamics essentially exacerbate critical demand for the counterpart micronutrients towards achieving ecosystem equilibrium. Herein, the phytoplankton demand for iron (Fe) uptake under high concentration of nitrate-nitrogen during spring in Xiangxi Bay, China, was studied. Our result confirmed that significant Fe concentrations (P = 0.01) in both autumn (0.62 ± 0.02 mgL⁻¹) and winter (0.06 ± 0.03 mgL⁻¹) relative to spring (0.004 ± 0.01 mgL⁻¹) are linked to the low NO₃⁻N paradigms during autumn and winter. As NO₃⁻N showed a sharp increase in spring, a dramatic reduction in the Fe pool was observed in the entire tributary, driving the system to a critical Fe limited condition. Bioassay study involving Fe additions both alone and in combinations led to maximum growth stimulation with biomass as chla (16.44 ± 0.82 μgL⁻¹) and phytoplankton cell density (6.75 × 10⁶ cellsL⁻¹) which differed significantly (P = 0.03) with the control. Further, the study demonstrated that Fe additions triggered biomass productions which increased linearly with cell densities. The P alone addition caused biomass production (15.26 ± 2.51 μgL⁻¹) greater than both NO₃⁻N (9.15 ± 0.66 μgL⁻¹) and NH₄⁺N (13.65 ± 1.68 μgL⁻¹) separate additions but reported a low aggregate cell density (3.18 × 10⁶ cellsL⁻¹). This indicates that nutrient and taxonomic characteristics e.g., high cell pigment contents rather than just the cell bio-volume also determine biomass. The Bacilliarophyta, Chlorophyta, and Cryptophyta with the total extinction of Cyanophyta characterized the bloom in spring. The anthropogenic NO₃⁻N input into XXB would have driven to higher NO₃⁻N than NH₄⁺N situation, and incapacitated the Cyanophyta that preferentially utilize NH₄⁺N. Our study provides a useful report for incorporation into the monitoring programs for prudent management of phytoplankton bloom and pollution across the eutrophic systems.
Show more [+] Less [-]Leaching of two northern France slag heaps: Influence on the surrounding aquatic environment
2020
Gaulier, Camille | Billon, Gabriel | Lesven, Ludovic | Falantin, Cécilia | Superville, Pierre-Jean | Baeyens, Willy | Gao, Yue
After the exploitation of coal mines in the 19th and 20th centuries in northern France, many mining slag heaps (SH) were left without any particular management or monitoring. Currently, the influence of these SHs on the quality of surrounding wetlands is hardly known.The purpose of this work is to determine the water quality in the neighbourhood of two SHs located near the city of Douai and its influence on the distribution of aquatic invertebrates in local wetlands. Our approach involves (1) the spatial and temporal characterization of the water composition (anions, major elements, sulphide, DOC and alkalinity) and of the biological diversity (aquatic invertebrates) and (2), based on this chemical and biological screening, the establishment of relationships between water quality and biodiversity distribution through multivariate data analysis. The results clearly indicate that substantial leaching from the slag heaps occurs, given the very high concentrations of dissolved sulphates (in the range of 2 g L⁻¹). While the pH remains weakly basic, indicating that the leaching water has been neutralized by the highly carbonated regional substratum, high levels of biodegradable organic matter and sulphate contents have been noticed. They sporadically cause significant drops in dissolved oxygen and the occurrence of dissolved sulphides that massively reduce biodiversity, qualitatively and quantitatively. In Summer, oxygen saturation is generally lower due to the higher rate of organic matter degradation, and the risk of anoxic episodes therefore increases. Finally, as wetlands are vulnerable environments, these preliminary results suggest that monitoring and management of these sites must be attempted quickly to avoid the degradation of those valuable habitats.
Show more [+] Less [-]Influence of humic acid on arsenic bioaccumulation and biotransformation to zebrafish: A comparative study between As(III) and As(V) exposure
2020
Wang, Xiaoyan | Liu, Liping | Wang, Xiangrui | Ren, Jinqian | Jia, Pei | Fan, Wenhong
Previous studies have indicated that natural organic matter in the aquatic environment could affect arsenic bioaccumulation and biotransformation to aquatic organisms. However, the differences between the effects of arsenite and arsenate exposure have not been studied and compared in fish exposure models. In this study, adult zebrafish (Danio rerio) were exposed to 5 mg/L inorganic As solutions, in the presence of a range of humic acid (HA) concentrations (1, 2.5, 5, 10, 20 mg/L) in 96 h waterborne exposure. Results showed that in the presence of HA, total As bioaccumulation was significantly reduced in zebrafish following arsenite exposure, while this reduction was not observed during arsenate exposure. The reduction in total arsenic bioaccumulation for arsenite exposure can be explained by the fact that HA forming a surface coating on the cell surface, hindering transport and internalization. However, this reduction in total As was not observed due to differences in uptake pathways for arsenate exposure. Results also showed that Arsenobetaine (AsB) was the main biotransformation product in zebrafish following inorganic As exposure, accounting for 44.8%–64.7% of extracted arsenic species in all exposure groups. The addition of HA caused levels of MMA and As(III) to decrease, while the distribution of AsB significantly increased in arsenite exposure groups. The increase in AsB could be because the As(III)-HA complex was formed, affecting the methylation of As(III). In contrast, the addition of HA to arsenate exposure groups, did not affect the reduction of As(V) to As(III) and therefore, an increase in the distribution of AsB was not observed in arsenate exposure groups. This study provides useful information on the mechanisms of toxicity, for improved risk assessment of As in natural aquatic environments.
Show more [+] Less [-]Neodymium-containing contrast induces mummification of neutrophil granulocytes
2020
Pleskova, Svetlana | Kryukov, Ruslan | Boryakov, Alexey | Gorshkova, Ekaterina
Recently, chemical compounds containing lanthanides were used in various fields of biology and medicine. It has been described that such compounds can be applied in scanning electron microscopy (SEM) to increase the contrast and simplify the sample preparation process due to the process of replacing calcium with lanthanides in cell. However cell death by different mechanisms under influence of lanthanides seems possible. Here, we described that mummification process is a cell death physiologically realized in time: some time after lanthanide contrasting, the cell remains metabolically active and is able to biochemically transform neodymium-containing contrast, oxidize it and form large agglomerates. A distinctive feature of mummification induced by neodymium-containing contrast (NCC) is the formation of a high-rigid oxygen-containing “shield” on the surface of a neutrophil granulocyte.
Show more [+] Less [-]Evaluating national ecological risk of agricultural pesticides from 2004 to 2017 in China
2020
Jiao, Cong | Chen, Lei | Sun, Cheng | Jiang, Yue | Zhai, Limei | Liu, Hongbin | Shen, Zhenyao
In recent years, excessive application and loss of pesticides have caused great risks to the aquatic systems, but the spatio-temporal variability in the ecological risk that agricultural pesticides pose to aquatic systems has not been explored at the national scale. In this study, an integrated assessment framework was proposed for the potential ecological risk of surface water caused by agricultural pesticide loss. The spatio-temporal variability in the potential ecological risk caused by agricultural pesticide runoff was evaluated. Based on the results, the total pesticide emissions increased from 165.47 tons in 2004 to 179.77 tons in 2017. Among the three pesticide types, insecticide had the largest application, but its runoff was estimated as the lowest. High-risk areas of insecticide runoff were concentrated in the east, south and central part of China, while the central region of China was identified as a hotspot due to the high and the ever-increasing ecological risk. This study provides an integrated method for potential ecological risk assessment of agricultural pesticide runoff to adjacent water bodies in large-scale regions and the results of the study have direct implications for environmental policies on pesticide management in China and around the world.
Show more [+] Less [-]