Refine search
Results 481-490 of 7,240
Synergetic removal of thallium and antimony from wastewater with jacobsite-biochar-persulfate system
2022
Liu, Juan | Wei, Xudong | Ren, Shixing | Qi, Jianying | Cao, Jielong | Wang, Jin | Wan, Yuebing | Liu, Yanyi | Zhao, Min | Wang, Liang | Xiao, Tangfu
Both of thallium (Tl) and antimony (Sb) are toxic elements in the natural environment. Emerging Tl and Sb pollution in water has gradually gained public concerns globally. However, limited technologies are available for co-removal of Tl and Sb from wastewater. Herein, an novel system was successfully fabricated to enhance the synergetic removal of both Tl and Sb in wastewater. In this study, MnFe₂O₄-biochar composite (MFBC) facilely synthesized by a one-pot hydrothermal method was used as adsorbent and persulfate (PS) activator for simultaneously removing Tl and Sb from wastewater. The optimal reaction conditions for best removal efficiency of Tl and Sb simultaneously were obtained by using the response surface design combined with Box-Behnken Design (BBD) model. Results unveiled that the average removal rates of Tl and Sb can achieve 98.33% and 89.14%, respectively under the optimal reaction conditions. Electron Spin Resonance (ESR), and radical quenching experiments showed that OH• and SO₄•– play a critical role in the removal of Tl–Sb compound pollution. Via using different characterization, it is revealed that the mechanism of removing Tl–Sb containing wastewater by MFBC-1.4/PS system is oxidation, adsorption, complexation and ion exchange. All these results indicate that MFBC-1.4/PS technology is prospective in highly effective removal of Tl and Sb from wastewater simultaneously.
Show more [+] Less [-]Identifying low-PM2.5 exposure commuting routes for cyclists through modeling with the random forest algorithm based on low-cost sensor measurements in three Asian cities
2022
Wu, Tzong-Gang | Chen, Yan-Da | Chen, Bang-Hua | Harada, Kouji H. | Lee, Kiyoung | Deng, Furong | Rood, Mark J. | Chen, Chu-Chih | Tran, Cong-Thanh | Chien, Kuo-Liong | Wen, Tzai-Hung | Wu, Chang-Fu
Cyclists can be easily exposed to traffic-related pollutants due to riding on or close to the road during commuting in cities. PM₂.₅ has been identified as one of the major pollutants emitted by vehicles and associated with cardiopulmonary and respiratory diseases. As routing has been suggested to reduce the exposures for cyclists, in this study, PM₂.₅ was monitored with low-cost sensors during commuting periods to develop models for identifying low exposure routes in three Asian cities: Taipei, Osaka, and Seoul. The models for mapping the PM₂.₅ in the cities were developed by employing the random forest algorithm in a two-stage modeling approach. The land use features to explain spatial variation of PM₂.₅ were obtained from the open-source land use database, OpenStreetMap. The total length of the monitoring routes ranged from 101.36 to 148.22 km and the average PM₂.₅ ranged from 13.51 to 15.40 μg/m³ among the cities. The two-stage models had the standard k-fold cross-validation (CV) R² of 0.93, 0.74, and 0.84 in Taipei, Osaka, and Seoul, respectively. To address spatial autocorrelation, a spatial cross-validation approach applying a distance restriction of 100 m between the model training and testing data was employed. The over-optimistic estimates on the predictions were thus prevented, showing model CV-R² of 0.91, 0.67, and 0.78 respectively in Taipei, Osaka, and Seoul. The comparisons between the shortest-distance and lowest-exposure routes showed that the largest percentage of reduced averaged PM₂.₅ exposure could reach 32.1% with the distance increases by 37.8%. Given the findings in this study, routing behavior should be encouraged. With the daily commuting trips expanded, the cumulative effect may become significant on the chronic exposures over time. Therefore, a route planning tool for reducing the exposures shall be developed and promoted to the public.
Show more [+] Less [-]Inter-annual reduction in rice Cd and its eco-environmental controls in 6-year biannual mineral amendment in subtropical double-rice cropping ecosystems
2022
Yin, Zerun | Sheng, Hao | Xiao, Huacui | Xue, Yi | Man, Zhiyong | Huang, Dezhi | Zhou, Qing
The alkaline mineral amendment is a practical means of alleviating Cd concentration in rice grain (CdR) in the short-term; however, the long-term remediation effect of mineral amendment on the CdR and the eco-environmental controls remains unknown. Here a mineral (Si–Ca–Mg) amendment, calcined primarily from molybdenum tailings and dolomite, was applied biannually over 6 years (12 seasons) to acidic and moderately Cd-contaminated double-rice cropping ecosystems. This study investigated the inter-annual variation of Cd in the rice-soil ecosystem and the eco-environmental controls in subtropical rice ecosystems. CdR was reduced by 50%–86% following mineral amendment. The within-year reduction in CdR was similar between early rice (50%–86%, mean of 68%) and late rice (68%–85%, mean of 74%), leading to CdR in all early rice and in 83% of late rice samples below the upper limit (0.2 mg kg⁻¹) of the China National Food Safety Standards. In contrast, the inter-annual reduction in CdR was moderately variable, showing a greater CdR reduction in the later 3 years (73%–86%) than in the former 3 years (54%–79%). Three years continuous mineral amendment was required to guarantee the safety rice production. The concentrations of DTPA-extractable and exchangeable Cd fractions in soil were reduced, while the concentration of oxides-bound Cd was increased. In addition, the soil pH, concentrations of Olsen-P and exchangeable Ca and Mg were elevated. These imply a lower apparent phytoavailability of Cd in the soil following mineral amendment. An empirical model of the 3-variable using soil DTPA-Cd, soil Olsen-P, and a climatic factor (precipitation) effectively predicted temporal changes in CdR. Our study demonstrates that Cd phytoavailability in soil (indexed by DTPA-extractable Cd) and climatic factors (e.g., temperature and precipitation) may directly/indirectly control the inter-annual reduction in CdR following mineral amendment in slightly and moderately Cd-contaminated paddy ecosystems.
Show more [+] Less [-]Bioremediation of hazardous pollutants from agricultural soils: A sustainable approach for waste management towards urban sustainability
2022
Yaashikaa, P.R. | Kumar, P Senthil
Soil contamination is perhaps the most hazardous issue all over the world; these emerging pollutants ought to be treated to confirm the safety of our living environment. Fast industrialization and anthropogenic exercises have resulted in different ecological contamination and caused serious dangerous health effects to humans and animals. Agro wastes are exceptionally directed because of their high biodegradability. Effluents from the agro-industry are a possibly high environmental risk that requires suitable, low-cost, and extensive treatment. Soil treatment using a bioremediation method is considered an eco-accommodating and reasonable strategy for removing toxic pollutants from agricultural fields. The present review was led to survey bioremediation treatability of agro soil by microbes, decide functional consequences for microbial performance and assess potential systems to diminish over potentials. The presence of hazardous pollutants in agricultural soil and sources, and toxic health effects on humans has been addressed in this review. The present review emphasizes an outline of bioremediation for the effective removal of toxic contaminants in the agro field. In addition, factors influencing recent advancements in the bioremediation process have been discussed. The review further highlights the roles and mechanisms of micro-organisms in the bioremediation of agricultural fields.
Show more [+] Less [-]Color preferences and gastrointestinal-tract retention times of microplastics by freshwater and marine fishes
2022
Okamoto, Konori | Nomura, Miho | Horie, Yoshifumi | Okamura, Hideo
We examined ingestion and retention rates of microplastics (MPs) by two freshwater (Japanese medaka and zebrafish) and two marine fish species (Indian medaka and clown anemonefish) to determine their color preferences and gastrointestinal-tract retention times. In our ingestion experiments, clown anemonefish ingested the most MP particles, followed by zebrafish, and then Japanese and Indian medaka. Next, we investigated color preferences among five MP colors. Red, yellow, and green MP were ingested at higher rates than gray and blue MPs for all tested fish species. To test whether these differences truly reflect a recognition of and preference for certain colors based on color vision, we investigated the preferences of clown anemonefish for MP colors under light and dark conditions. Under dark conditions, ingestion of MP particles was reduced, and color preferences were not observed. Finally, we assessed gastrointestinal-tract retention times for all four fish species. Some individuals retained MP particles in their gastrointestinal tracts for over 24 h after ingestion. Our results show that fish rely on color vision to recognize and express preferences for certain MP colors. In addition, MP excretion times varied widely among individuals. Our results provide new insights into accidental MP ingestion by fishes.
Show more [+] Less [-]Comparing resistome profiles from anthropogenically impacted and non-impacted areas of two South Shetland Islands – Maritime Antarctica
2022
Centurion, VB | Silva, JB | Duarte, AWF | Rosa, LH | Oliveira, VM
Whalers Bay, in Deception Island, has one of the most anthropogenically impacted areas in Maritime Antarctica. However, considering the volcanic nature (high concentrations of heavy metals) of Deception Island's soils, this putative anthropogenic impact should be carefully investigated. In this context, the objective of this study was to compare resistome profiles of impacted and non-impacted areas in Deception Island (Whalers Bay, Crater Lake, and Fumarole Bay) and Livingston Island (Hannah Point) in order to investigate the microbiome tolerance/resistance mechanisms selected as a function of environmental drivers. Metagenomics was used to search for genes conferring resistance/tolerance to antibiotics, biocides, and heavy metals. Whalers Bay has a greater diversity of antibiotic, biocide, and heavy metal resistance classes found in its microbiomes. However, Hannah Point, at Livingston Island, has a greater abundance of antibiotic and biocide resistance/tolerance genes. The microbiome of Deception Island's non-impacted areas (Crater Lake and Fumarole Bay) showed resistance/tolerance genes almost entirely to heavy metals. Pb was found in higher concentrations in Whalers Bay soil in comparison to the other areas, indicating human contamination. The non-metric multidimensional scaling (NMDS) analysis revealed that Pb concentrations influenced resistome profiles in Whalers Bay soil. Despite the effect of Pb on the microbial communities of Whalers Bay, most heavy metal concentrations did not have a significant impact on resistome genes, suggesting that the volcanic soil heavy metal concentration of Deception Island has little biological influence.
Show more [+] Less [-]Interplay between arsenic and selenium biomineralization in Shewanella sp. O23S
2022
Staicu, Lucian C. | Wójtowicz, Paulina J. | Molnár, Zsombor | Ruiz-Agudo, Encarnación | Gallego, José Luis R. | Baragaño, Diego | Pósfai, Mihály
Bacteria play crucial roles in the biogeochemical cycle of arsenic (As) and selenium (Se) as these elements are metabolized via detoxification, energy generation (anaerobic respiration) and biosynthesis (e.g. selenocysteine) strategies. To date, arsenic and selenium biomineralization in bacteria were studied separately. In this study, the anaerobic metabolism of As and Se in Shewanella sp. O23S was investigated separately and mixed, with an emphasis put on the biomineralization products of this process. Multiple analytical techniques including ICP-MS, TEM-EDS, XRD, Micro-Raman, spectrophotometry and surface charge (zeta potential) were employed. Shewanella sp. O23S is capable of reducing selenate (SeO₄²⁻) and selenite (SeO₃²⁻) to red Se(-S)⁰, and arsenate (AsO₄³⁻) to arsenite (AsO₃³⁻). The release of H₂S from cysteine led to the precipitation of AsS minerals: nanorod AsS and granular As₂S₃. When As and Se oxyanions were mixed, both As–S and Se(-S)⁰ biominerals were synthesized. All biominerals were extracellular, amorphous and presented a negative surface charge (−24 to −38 mV). Kinetic analysis indicated the following reduction yields: SeO₃²⁻ (90%), AsO₄³⁻ (60%), and SeO₄²⁻ (<10%). The mix of SeO₃²⁻ with AsO₄³⁻ led to a decrease in As removal to 30%, while Se reduction yield was unaffected (88%). Interestingly, SeO₄²⁻ incubated with AsO₄³⁻ boosted the Se removal (71%). The exclusive extracellular formation of As and Se biominerals might indicate an extracellular respiratory process characteristic of various Shewanella species and strains. This is the first study documenting a complex interplay between As and Se oxyanions: selenite decreased arsenate reduction, whereas arsenate stimulated selenate reduction. Further investigation needs to clarify whether Shewanella sp. O23S employs multi-substrate respiratory enzymes or separate, high affinity enzymes for As and Se oxyanion respiration.
Show more [+] Less [-]Gas-PM2.5 partitioning, health risks, and sources of atmospheric PAHs in a northern China city: Impact of domestic heating
2022
Sun, Yuewei | Chen, Jing | Qin, Weihua | Yu, Qing | Xin, Ke | Ai, Jing | Huang, Huiying | Liu, Xingang
The diurnal variation, gas-particle partitioning, health risks, and sources of polycyclic aromatic hydrocarbons (PAHs) were investigated in a northern basin city of China in winter, 2020. The mean concentrations of particulate and gaseous PAHs were 87.90 ng m⁻³ and 69.65 ng m⁻³, respectively, and their concentrations were considerably enhanced during the domestic heating period. The relationship between the gas-particle partitioning coefficient of PAHs (KP) and subcooled liquid vapor pressure of PAHs (PL⁰) indicated organic absorption as the mechanism for this partitioning. However, the dual sorption model confirmed adsorption onto elemental carbon (EC). The health risks indicated by several equivalent parameters showed an important health effect of PAHs, especially of particulate PAHs bound onto PM₂.₅ during the heating period. Environmentally persistent free radicals (EPFRs) were also studied as an auxiliary parameter to evaluate the health impact of PAHs. According to the diagnostic ratios of PAHs and PMF model results, petroleum volatilization and coal combustion were the dominant sources of particulate PAHs during the non-heating and heating periods, respectively. The source apportionment results can help efficiently control PAHs and their health risks.
Show more [+] Less [-]Poly-NIPAM/Fe3O4/multiwalled carbon nanotube nanocomposites for kerosene removal from water
2022
Abdullah, Thamer Adnan | Juzsakova, Tatjána | Le, Phuoc-Cuong | Kułacz, Karol | Salman, Ali D. | Rasheed, Rashed T. | Mallah, Muhammad Ali | Varga, Béla | Mansoor, Hadeel | Mako, Eva | Zsirka, Balázs | Nadda, Ashok Kumar | Nguyen, X Cuong | Nguyen, D Duc
Multiwalled carbon nanotubes (MWCNTs) were oxidized using a mixture of H₂SO₄ and HNO₃, and the oxidized MWCNTS were decorated with magnetite (Fe₃O₄). Finally, poly-N-isopropyl acrylamide-co-butyl acrylate (P-NIPAM) was added to obtain P-NIPAM/Fe/MWCNT nanocomposites. The nanosorbents were characterized by various techniques, including X-ray diffraction, transmission electron microscopy, scanning electron microscopy, thermogravimetric analysis, and Brunauer–Emmett–Teller analysis. The P-NIPAM/Fe/MWCNT nanocomposites exhibited increased surface hydrophobicity. Owing to their higher adsorption capacity, their kerosene removal efficiency was 95%; by contrast, the as-prepared, oxidized, and magnetite-decorated MWCNTs had removal efficiencies of 45%, 55%, and 68%, respectively. The P-NIPAM/Fe/MWCNT nanocomposites exhibited a sorbent capacity of 8.1 g/g for kerosene removal from water. The highest kerosene removal efficiency from water was obtained at a process time of 45 min, sorbent dose of 0.005 g, solution temperature of 40 °C, and pH 3.5. The P-NIPAM/Fe/MWCNTs showed excellent stability after four cycles of kerosene removal from water followed by regeneration. The reason may be the increase in the positive charge of the polymer at pH 3.5 and the increased adsorption affinity of the adsorbent toward the kerosene contaminant. The pseudo second-order model was found to be the most suitable model for studying the kinetics of the adsorption reaction.
Show more [+] Less [-]Microwave-responsive SiC foam@zeolite core-shell structured catalyst for catalytic pyrolysis of plastics
2022
Chen, Zhaohui | Monzavi, Mohammad | Latifi, Mohammad | Samih, Said | Chaouki, J.
Catalytic pyrolysis is a promising chemical recycling technology to supplement mechanical recycling since plastics can be broken down into monomers or converted to the required fuels and chemicals. In this study, a microwave (MW) -responsive SiC foam@zeoltie core-shell structured catalyst was proposed for the catalytic pyrolysis of polyolefins. Under microwave irradiation, the SiC foam core works as both microwave adsorber and catalyst support, thus concentrating the generated heat energy on the ZSM-5 zeolite shell, where the catalytic reaction takes place. SiC foam with an open cellular structure can also improve the global transport of mass and heat during plastics pyrolysis. In this work, the effects of the SiO₂/Al₂O₃ ratio and alkaline treatment of ZSM-5 zeolite coated SiC foam under MW irradiation on the variations in product distribution from low-density polyethylene (LDPE) pyrolysis were investigated at 450 °C. The results indicated that the appropriate acidity and pore structure were crucial to upgrading gas and liquid products. Particularly, the creation of a mesoporous structure in ZSM-5 zeolite via alkaline treatment could improve the diffusion of large molecules and products, thus significantly increasing the selectivity of high-valued light olefins and aromatics while inhibiting the formation of unwanted alkanes, which are expected in the chemical industry. Concretely, the concentration of olefins in gas increased to 51.0 vol% for ZSM-5(50)-0.25AT, and 65.6 vol% for ZSM-5 (50)-0.50AT, compared with 45.2 vol% for the parent ZSM-5(50). The relative concentration of aromatics in liquid decreased from 96.6% for ZSM-5(50) to 75.9% for ZSM-5(50)-0.25AT, and 71.1% for ZSM-5(50)-0.50AT. Given the respective yield of gas and liquid, the total selectivity of C2–C4 olefins and aromatics for mesoporous ZSM-5 zeolites could reach 58.6–64.9% during LDPE pyrolysis, which were higher than that for the parent ZSM-5 zeolite.
Show more [+] Less [-]