Refine search
Results 491-500 of 6,548
Sampling microfibres at the sea surface: The effects of mesh size, sample volume and water depth Full text
2020
Ryan, Peter G. | Suaria, Giuseppe | Perold, Vonica | Pierucci, Andrea | Bornman, Thomas G. | Aliani, Stefano
Microfibres are one of the most ubiquitous particulate pollutants, occurring in all environmental compartments. They are often assumed to be microplastics, but include natural as well as synthetic textile fibres and are perhaps best treated as a separate class of pollutants given the challenges they pose in terms of identification and contamination. Microfibres have been largely ignored by traditional methods used to sample floating microplastics at sea, which use 300–500 μm mesh nets that are too coarse to sample most textile fibres. There is thus a need for a consistent set of methods for sampling microfibres in seawater. We processed bulk water samples through 0.7–63 μm filters to collect microfibres in three ocean basins. Fibre density increased as mesh size decreased: 20 μm mesh sampled 41% more fibres than 63 μm, and 0.7 μm filters sampled 44% more fibres than 25 μm mesh, but mesh size (20–63 μm) had little effect on the size of fibres retained. Fibre density decreased with sample volume when processed through larger mesh filters, presumably because more fibres were flushed through the filters. Microfibres averaged 2.5 times more abundant at the sea surface than in water sampled 5 m sub-surface. However, the data were noisy; counts of replicate 10-L samples had low repeatability (0.15–0.36; CV = 56%), suggesting that single samples provide only a rough estimate of microfibre abundance. We propose that sampling for microfibres should use a combination of <1 μm and 20–25 μm filters and process multiple samples to offset high within-site variability in microfibre densities.
Show more [+] Less [-]Graphene oxide exposure suppresses nitrate uptake by roots of wheat seedlings Full text
2020
Weng, Yineng | You, Yue | Lu, Qi | Zhong, Ao | Liu, Siyi | Liu, Huijun | Du, Shaoting
Despite the large number of studies reporting the phytotoxicity of graphene-based materials, the effects of these materials on nutrient uptake in plants remain unclear. The present study showed that nitrate concentrations were significantly decreased in the roots of wheat plants treated with graphene oxide (GO) at 200–800 mg L⁻¹. Non-invasive microelectrode measurement demonstrated that GO could significantly inhibit the net NO₃⁻ influx in the meristematic, elongation, and mature zones of wheat roots. Further analysis indicated that GO could be trapped in the root vacuoles, and that the maximal root length and the number of lateral roots were significantly reduced. Additionally, root tip whitening, creases, oxidative stress, and weakened respiration were observed. These observations indicate that GO is highly unfavorable for vigorous root growth and inhibits increase in root uptake area. At the molecular level, GO exposure caused DNA damage and inhibited the expression of most nitrate transporters (NRTs) in wheat roots, with the most significantly downregulated genes being NRT1.3, NRT1.5, NRT2.1, NRT2.3, and NRT2.4. We concluded that GO exposure decreased the root uptake area and root activity, and decreased the expression of NRTs, which may have consequently suppressed the NO₃⁻ uptake rate, leading to adverse nitrate accumulation in stressed plants.
Show more [+] Less [-]Formation of perfluorocarboxylic acids from 6:2 fluorotelomer sulfonate (6:2 FTS) in landfill leachate: Role of microbial communities Full text
2020
Hamid, Hanna | Li, Loretta Y. | Grace, John R.
Fluorotelomer compounds in landfill leachate can undergo biotransformation under aerobic conditions and act as a secondary source of perfluorocarboxylic acids (PFCAs) to the environment. Very little is known about the role of various microbial communities towards fluorotelomer compounds biotransformation. Using an inoculum prepared from the sediment of a leachate collection ditch, 6:2 fluorotelomer sulfonate (6:2 FTS) biotransformation experiments were carried out. Specific substrates (i.e., glucose, ammonia) and ammonia-oxidizing inhibitor (allylthiourea) were used to produce two experimental runs with heterotrophic (HET) growth only and heterotrophic with ammonia-oxidizing and nitrite- oxidizing bacteria (HET + AOB + NOB). After 10 days, ∼20% of the spiked 6:2 FTS removal was observed in HET + AOB + NOB, compared to ∼7% under HET condition. Higher 6:2 FTS removal in HET + AOB + NOB likely resulted from ammonia monooxygenase enzyme that catalyzes the first step of ammonia oxidation. The HET + AOB + NOB condition also showed higher PFCA (C4–C6) formation (∼2% of initially spiked 6:2 FTS), possibly due to higher overall bioactivity. Microbial community analysis through 16s rRNA sequencing confirmed that Proteobacteria and Bacteroidetes were the most abundant phyla (>75% relative abundance) under all experimental conditions. High abundance of Actinobacteria (>17%) was observed under the HET + AOB + NOB condition on day 7. Since Actinobacteria can synthesize a wide range of enzymes including monooxygenases, they likely play an important role in 6:2 FTS biotransformation and PFCA production.
Show more [+] Less [-]The short- and long-term associations of particulate matter with inflammation and blood coagulation markers: A meta-analysis Full text
2020
Tang, Hong | Cheng, Zilu | Li, Na | Mao, Shuyuan | Ma, Runxue | He, Haijun | Niu, Zhiping | Chen, Xiaolu | Xiang, Hao
Inflammation and the coagulation cascade are considered to be the potential mechanisms of ambient particulate matter (PM) exposure-induced adverse cardiovascular events. Tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), interleukin-8 (IL-8), and fibrinogen are arguably the four most commonly assayed markers to reflect the relationships of PM with inflammation and blood coagulation. This review summarized and quantitatively analyzed the existing studies reporting short- and long-term associations of PM₂.₅(PM with an aerodynamic diameter ≤2.5 μm)/PM₁₀ (PM with an aerodynamic diameter≤10 μm) with important inflammation and blood coagulation markers (TNF-α, IL-6, IL-8, fibrinogen). We reviewed relevant studies published up to July 2020, using three English databases (PubMed, Web of Science, Embase) and two Chinese databases (Wang-Fang, China National Knowledge Infrastructure). The OHAT tool, with some modification, was applied to evaluate risk of bias. Meta-analyses were conducted with random-effects models for calculating the pooled estimate of markers. To assess the potential effect modifiers and the source of heterogeneity, we conducted subgroup analyses and meta-regression analyses where appropriate. The assessment and correction of publication bias were based on Begg’s and Egger’s test and “trim-and-fill” analysis. We identified 44 eligible studies. For short-term PM exposure, the percent change of a 10 μg/m³ PM₂.₅ increase on TNF-α and fibrinogen was 3.51% (95% confidence interval (CI): 1.21%, 5.81%) and 0.54% (95% confidence interval (CI): 0.21%, 0.86%) respectively. We also found a significant short-term association between PM₁₀ and fibrinogen (percent change = 0.17%, 95% CI: 0.04%, 0.29%). Overall analysis showed that long-term associations of fibrinogen with PM₂.₅ and PM₁₀ were not significant. Subgroup analysis showed that long-term associations of fibrinogen with PM₂.₅ and PM₁₀ were significant only found in studies conducted in Asia. Our findings support significant short-term associations of PM with TNF-α and fibrinogen. Future epidemiological studies should address the role long-term PM exposure plays in inflammation and blood coagulation markers level change.
Show more [+] Less [-]Chlorinated organic contaminants in fish from the South China Sea: Assessing risk to Indo-Pacific humpback dolphin Full text
2020
Yu, Xiaoxuan | He, Qingya | Sanganyado, Edmond | Liang, Yan | Bi, Ran | Li, Ping | Liu, Wenhua
Indo-Pacific humpback (Sousa chinensis) dolphins are primarily exposed to chlorinated organic contaminants through the consumption of contaminated fish. We assessed the potential risk of chlorinated organic contaminants to Indo-Pacific humpback dolphins by determining the concentration of 21 organochlorine pesticides (OCPs) and 28 polychlorinated biphenyls (PCBs) in 14 fish species collected from the South China Sea coastal waters. The results of the study showed that bioaccumulation of OCPs and PCBs was influenced by sampling location, fish species, and fish niche. The average ∑DDT (Dichlorodiphenyltrichloroethane) concentration was 3 times higher in benthopelagic fish (488 ng/g) compared to pelagic-neritic fish (155 ng/g) from Jiangmen, whereas an opposite pattern of the lower DDTs concentration in benthopelagic and demersal fish compared to pelagic fish from Zhuhai (p < 0.05). Furthermore, the molecular diagnostic ratios using DDT and its metabolites (DDT/(DDD + DDE) were less than one, suggesting the DDT contamination at Zhuhai and Jiangmen may due to the historical agricultural usage of the lands. The reference dose-based (RfD) risk quotient (RQ) suggested that DDTs are potential risk in Qinzhou, which is in accordance with the high DDTs concentration found in fishes captured in Qinzhou. The RfD risk quotient of PCBs is at potential risk for all sites (RQ > 100), except Xiamen and Qinzhou. A highest average ∑DDT concentration was observed Qinzhou. This study showed that fish consumption might pose a health risk to Indo-Pacific humpback dolphins. However, further studies are required to determine the contribution of fish niche to the overall risk.
Show more [+] Less [-]Developing the environmentally friendly technologies of combustion of gas hydrates. Reducing harmful emissions during combustion Full text
2020
Misyura, S.Y.
In recent years, there has been a sharp increase in interest in the development of environmentally friendly technology for burning methane gas hydrate. In addition to solving energy problems, gas hydrates will help to make significant progress in solving environmental problems. The use of gas hydrate combustion technology is shown to reduce harmful emissions. In this work, experimental studies on the combustion of double hydrate powder of propane-methane have been performed at five different ways of combustion organization. Powder heating was realized using: 1) induction heating; 2) radiation and convective heating; 3) using a hot metal body; 4) combustion without forced gas flow and 5) combustion in the presence of forced and free air convection. Currently there has been neither a comprehensive study of the combustion of double gas hydrates, nor a comparison of the combustion efficiency for different methods; besides, no data on emissions have been obtained. The maximum dissociation rate is implemented with the use of induction heating. Using a gas analyzer the concentration of gases during the gas hydrate combustion has been measured. Comparison of different ways of combustion allows optimizing the combustion efficiency of gas hydrates.
Show more [+] Less [-]Development of a sequential extraction and speciation procedure for assessing the mobility and fractionation of metal nanoparticles in soils Full text
2020
Choleva, Tatiana G. | Tsogas, George Z. | Vlessidis, Athanasios G. | Giokas, Dimosthenis L.
This study describes the development of a sequential extraction procedure for the evaluation of metal nanoparticle mobility and bioaccessibility in soils. The procedure, that was developed using gold nanoparticles (AuNPs) as model species, relies on the fractionation of nanoparticles by sequentially dissolving soil matrix components (carbonates, metal oxides, organic matter and mineral phases) in order to release the entrapped nanoparticle species in the extract solution. By summing up the concentration of AuNPs recovered in each fraction it was found that 93.5% of the spiked AuNP concentration could be recovered which satisfactorily represents the nominal AuNP concentration in the soil. The efficiency of the procedure was found to depend on several procedural artifacts related to the separation of AuNPs from soil colloids and the reactivity of the extraction reagents with AuNPs and their precursor metal ions. Based on the results obtained a protocol for the speciation of the AuNPs and Au ions in the soil sample was also developed. The results of the study show that both AuNPs and Au ions are mainly associated with soil organic matter, which significantly reduces their mobility, while a small amount (<10%) is associated with metal oxides which are more mobile and potentially bioaccessible. The developed procedure provides a springboard for further development of sequential extraction procedures of metal nanoparticles in soils that could be used to assess both the exposure and release of metal nanoparticles and their precursor metal ions in the environment (as total extractable concentration) as well as provide evidence regarding their bioaccessibility and potential bioavailability by determining the concentration of nanoparticles in each specific soil fraction.
Show more [+] Less [-]Mn-substituted goethite for uranium immobilization: A study of adsorption behavior and mechanisms Full text
2020
Zhang, Xiaowen | Zhang, Lijiang | Liu, Yong | Li, Mi | Wu, Xiaoyan | Jiang, Tianjiao | Chen, Chen | Peng, Ying
Goethite is a common iron hydroxide, which can be substituted by manganese (Mn) in the goethite structure. It is important to investigate the immobilization of uranium(VI) on Mn-substituted goethite (Mn-Goe) to understand the fate and migration of uranium in soils and sediments. In this study, the sorption of uranium(VI) by Mn-Goe was investigated as a function of pH, adsorbent dosage, contact time, and initial uranium concentration in batch experiments. Several material analysis techniques were used to characterize manganese substituted materials. Results indicated that Mn was successfully introduced into the goethite structure, the length of particles increased gradually, the surface clearly exhibited higher roughness with increasing Mn content, and that uranium(VI) sorption of synthetic Mn-Goe appeared to be higher than that of goethite. The sorption kinetics supported the results presented by the pseudo-second-order model. The sorption capacity of uranium on Mn-Goe was circa 77 mg g⁻¹ at pH = 4.0 and 25 °C. Fourier transform-infrared spectroscopy (FT-IR) analyses revealed that uranium ions were adsorbed through functional groups containing oxygen on the Mn-Goe structure. The enhancement of Mn-substitution for the uranium(VI) sorption capacity of goethite was revealed. This study suggests that goethite and Mn-Goe can both play a significant role in controlling the mobility and transport of uranium(VI) in the subsurface environment, which is helpful for material development in environmental remediation.
Show more [+] Less [-]Cadmium accumulation in rice (Oryza sativa L.) alleviated by basal alkaline fertilizers followed by topdressing of manganese fertilizer Full text
2020
Deng, Xiao | Chen, Yixuan | Yang, Yang | Lü, Lei | Yuan, Xiaoqing | Zeng, Hongyuan | Zeng, Qingru
Rice is a main source of dietary cadmium (Cd), thus, how to reduce the Cd concentration in brown rice has received extensive attention worldwide. In three acidic paddy soils slightly to moderately contaminated with Cd, a series of field experiments were conducted to evaluate the effects of different proportions of nitrogen-phosphorus-potassium (N-P-K) fertilizer (urea, calcium magnesium phosphate, and potassium carbonate, respectively) alone or coupled with a topdressing of manganese (Mn) fertilizer at the tillering stage on reducing Cd bioavailability in soil and uptake in rice. The rational application of N-P-K fertilizer not only provided the basic nutrients to promote the normal growth of rice but also increased soil pH and thereby reduced the Cd bioavailability in soil. The Mg(NO₃)₂-extracted Cd concentrations in the three soils were reduced by 26.46–56.53%, while TCLP-extracted Cd were reduced by 19.87–45.41%, with little influence on soil cation exchange capacity (CEC) and organic matter (OM). The application of Mn fertilizer at the tillering stage increased Mn and Cd sequestration in the iron plaque. The Mn content in iron plaque increased by 15.71–58.67% and a significant positive correlation between Cd and Mn was observed at the three sites. Collectively, this combined method of fertilization significantly reduced Cd accumulation in rice tissues, the Cd concentrations in roots of treated plants decreased by 11.18–37.78%, whereas the concentrations in straw decreased by 13.16–41.03%. Particularly to brown rice, in which accumulation decreased by 25.19–44.70%, 37.35–47.84%, and 38.00–60.88% in three typical paddy fields, but no significant effect was observed for the Cd translocation factors (TF) among rice tissues. Thus, the basal application of combined urea and alkaline inorganic fertilizers followed by topdressing of Mn fertilizer may be a promising and cost-effective tactics for the remediation of Cd-contaminated paddy soils.
Show more [+] Less [-]Sulfide reduction can significantly enhance transport of biochar fine particles in saturated porous medium Full text
2020
Ma, Pengkun | Chen, Wei
The release of fine particles from biochar materials applied in the environment may have important environmental implications, such as mobilization of environmental contaminants. In natural environments biochar fine particles can undergo various transformation processes, which may change their surface chemistry and consequently, the mobility of the particles. Here, we show that sulfide reduction can significantly alter the transport of wheat-straw- and pine-wood-derived biochar fine particles in saturated porous media. Counterintuitively, the sulfide-reduced biochar particles exhibited greater mobility in artificial groundwater than their non-reduced counterparts, even though reduction led to decrease of surface charge negativity and increase of hydrophobicity (from the removal of surface O-functional groups), both should favor particle deposition, as predicted based on extended Derjaguin–Landau–Verwey–Overbeek (XDLVO) theory. Using transport experiments conducted in single-cation background solutions containing K⁺, Mg²⁺ or Ca²⁺ under different pH conditions, we show that the surprisingly greater mobility of sulfide-reduced biochar particles was attributable to the removal of surface carboxyl groups during reduction, as this markedly alleviated particle deposition through cation bridging, wherein Ca²⁺ acted as the bridging agent in linking the surface O-functional groups of biochar particles and quartz sand. These findings show the critical roles of surface properties in dictating the mobility of biochar fine particles and call for further understanding of their transport properties, which apparently cannot be simply extrapolated based on the findings of other (engineered) carbonaceous nanomaterials.
Show more [+] Less [-]