Refine search
Results 651-660 of 4,896
Enhanced Cu(II)-mediated fenton-like oxidation of antimicrobials in bicarbonate aqueous solution: Kinetics, mechanism and toxicity evaluation
2019
Peng, Jianbiao | Zhang, Chaonan | Zhang, Ya | Miao, Dong | Zhang, Yaozong | Liu, Haijin | Li, Jinghua | Xu, Lei | Shi, Jialu | Liu, Guoguang | Gao, Shixiang
Increasing attention has been attracted in developing new technologies to remove chlorofene (CF) and dichlorofene (DCF), which were active agents in antimicrobials for general cleaning and disinfecting. This study investigated the significant influences of bicarbonate (HCO3−) on the degradation of CF and DCF in the Cu(II)-mediated Fenton-like system Cu2+/H2O2. Our results indicate that HCO3− may play a dual role to act 1) as a ligand to stabilize Cu(II), forming soluble [CuII(HCO3−)(S)]+ species to catalyze H2O2 producing hydroxyl radical (OH) and superoxide ion (O2−) and 2) as a OH scavenger. Furthermore, the reaction kinetics, mechanisms, and intermediates of CF and DCF were assessed. The apparent rate constants of CF and DCF were enhanced by a factor of 8.5 and 5.5, respectively, in the presence of HCO3− at the optimized concentration of 4 mM. Based on the intermediate identification and frontier electron densities (FEDs) calculations, the associated reaction pathways were tentatively proposed, including C–C scission, single or multiple hydroxylation, and coupling reaction. In addition, significant reduction in the aquatic toxicity of CF and DCF was observed after treatment with Cu2+/H2O2–HCO3- system, evaluated by Ecological Structure Activity Relationships (ECOSAR) program. These findings provide new insights into Cu(II)-mediated reactions to better understand the environmental fate of organic contaminants in carbonate-rich waters.
Show more [+] Less [-]Physio-chemical effects of freshwaters on the dissolution of elementary mercury
2019
Tshumah-Mutingwende, Rosamond R.M.S. | Takahashi, Fumitake
Elemental mercury (Hg⁰) is widely used by Artisanal and small-scale gold miners (ASGMs) to extract gold from ore. Due to the unavailability of appropriate waste disposal facilities, Hg⁰-rich amalgamation tailings are often discharged into nearby aquatic systems where the Hg⁰ droplets settle in bottom sediment and sediment-water interfaces. Hg⁰ dissolution and following biogeochemical transformations to methylmercury (MeHg) have been concerned owing to its potential risk to human health and the ecosystem. For reliable estimates of Hg exposure to human bodies using pollutant environmental fate and transport models, knowledge of the Hg⁰ dissolution rate is important. However, only limited literature is available. Therefore, it was investigated in this study. Dissolution tests in a ‘dark chamber’ revealed that an increase in medium pH resulted in a decrease in the dissolution rate, whereas, a large Hg⁰ droplet surface area (SA) and high Reynolds number (Re) resulted in a faster dissolution. A multivariate first order dissolution model of the form:kˆ=−7.9×10−5[pH]+7.0×10−4[logRe]+7.9×10−4[SA]−2.5×10−3 was proposed (adjusted R² = 0.99). The Breusch-Pagan and White heteroscedasticity tests revealed that the model residuals are homoscedastic (p-value = 0.05) at the 5% significance level. Parameter sensitivity analysis suggests that slow mercury dissolution from the Hg⁰ droplets to aquatic systems might mask emerging environmental risk of mercury. Even after mercury usage in ASGM is banned, mercury dissolution and following contamination will continue for about 40 years or longer owing to previously discharged Hg⁰ droplets.
Show more [+] Less [-]Effect of low-dose, repeated exposure of contaminants of emerging concern on plant development and hormone homeostasis
2019
McGinnis, Michelle | Sun, Chengliang | Dudley, Stacia | Gan, Jay
Treated wastewater is increasingly used to meet agriculture's water needs; however, treated wastewater contains numerous contaminants of emerging concern (CECs). With exposure and uptake of CECs, phytotoxicity and health of crop plants is of concern, but is poorly understood. This study evaluated the effect of low-dose, chronic exposure to a mixture of 10 CECs, including 4 antibiotics, 3 anti-inflammatory drugs, 1 antiepileptic, 1 beta-blocker, and 1 antimicrobial, on lettuce (Lactuca sativa) and cucumber (Cucumis sativa L.) plants. The CEC mixture was added in nutrient media at 1 to 20X of their typical levels in treated wastewater effluents. Biological endpoints including germination, growth, phytohormone homeostasis, and CEC bioaccumulation were determined. Exposure to the CEC mixture did not affect the germination rate of lettuce seeds, but stimulated root elongation and increased the root-to-shoot biomass ratio during a 7 d cultivation. A dose-dependent decrease in biomass was observed in cucumber seedling after a 30 d exposure, with the highest rate CEC treatment resulting in decreases of 51.2 ± 20.9, 26.3 ± 34.1, and 33.2 ± 41.7% in the below-ground, above-ground, and total biomass, respectively. Levels of abscisic acid were significantly elevated (p < 0.05) in the leaves, but decreased (p < 0.05) in the roots. The dose-response of auxin was characterized by a hormesis effect. A significant 6-fold increase in the stem auxin level was observed at the 1X CEC rate, followed by a decrease to 2-fold the control at the 20X rate. Leaf auxin concentrations also significantly increased at the 1X CEC rate to 16-fold, followed by a decrease at the highest CEC rate. The results of this study suggeste that chronic exposure to low levels of CEC mixtures may compromise the fitness of plants, and the impairments are underlined by alterations in hormone balances.
Show more [+] Less [-]Outdoor manufacture of UV-Cured plastic linings for storm water culvert repair: Chemical emissions and residual
2019
Li, Xianzhen | Ra, Kyungyeon | Nuruddin, Md | Teimouri Sendesi, Seyedeh Mahboobeh | Howarter, John A. | Youngblood, Jeffrey P. | Zyaykina, Nadya | Jafvert, Chad T. | Whelton, Andrew J.
Storm water culverts are integral for U.S. public safety and welfare, and their mechanical failure can cause roadways to collapse. To repair these buried assets, ultraviolet (UV) light cured-in-place-pipes (CIPP) are being installed. Chemical emission and residual material left behind from the installation process was investigated in New York and Virginia, USA. Samples of an uncured resin tube and field-cured styrene-based resin CIPPs were collected and analyzed. Also collected were air and water samples before, during, and after installations. Chemicals were emitted into air because of the installation and curing processes. Particulates emitted into the air, water, and soil contained fiberglass, polymer, and contaminants, some of which are regulated by state-level water quality standards. The uncured resin tube contained more than 70 chemical compounds, and 19 were confirmed with analytical standards. Compounds included known and suspected carcinogens, endocrine disrupting compounds, hazardous air pollutants, and other compounds with little aquatic toxicity data available. Compounds (14 of 19 confirmed) were extracted from the newly installed CIPPs, and 11 were found in water samples. Aqueous styrene (2.31 mg/L), dibutyl phthalate (12.5 μg/L), and phenol (16.7 μg/L) levels exceeded the most stringent state water quality standards chosen in this study. Styrene was the only compound that was found to have exceed a 48 h aquatic toxicity threshold. Newly installed CIPPs contained a significant amount volatile material (1.0 to > 9.0 wt%). Recommendations provided can reduce chemical emission, as well as improve worksite and environmental protection practices. Recommended future research is also described.
Show more [+] Less [-]Air pollution and telomere length in adults: A systematic review and meta-analysis of observational studies
2019
Miri, Mohammad | Nazarzadeh, Milad | Alahabadi, Ahmad | Ehrampoush, Mohammad Hassan | Rad, Abolfazl | Lotfi, Mohammad Hassan | Sheikhha, Mohammad Hassan | Sakhvidi, Mohammad Javad Zare | Nawrot, Tim S. | Dadvand, Payam
Telomere length (TL) has been suggested to be a surrogate for cellular ageing, and a record of cumulative inflammation and oxidative stress over life. An emerging body of evidence has associated exposure to air pollution to changes in TL. To date there is no available systematic review of literature on this association. We aimed to systematically review and conduct meta-analysis of published studies on the relationship between air pollution and TL in adults. Electronic databases were systematically searched for available English language studies on the association between air pollution and TL published up to 1 July 2018. Meta-analyses were conducted following MOOSE guidelines. The heterogeneity in the reported associations was assessed using Cochran's Q test and quantified as I² index. Publication bias was assessed using Egger's regression. Our search identified 19 eligible studies including 11 retrospective and eight prospective studies of which, four had excellent quality, ten had good quality and five had fair quality. Meta-analysis result of two studies on long-term exposure to PM₂.₅ showed an inverse association between these exposures and TL (for 5 μg/m³ PM₂.₅–0.03 95% CI; −0.05, −0.01). Meta-analysis of short-term exposure to PM₂.₅ with three studies and Polychlorinated Biphenyls (PCBs) with two studies revealed a direct association between these exposures and TL (0.03 95% CI; 0.02, 0.04 and 0.10 95% CI; 0.06, 0.15 respectively). No statistically significant relationship between exposure to PM₁₀ and polycyclic aromatic hydrocarbons (PAHs) exposure and TL were observed. We observed suggestive evidence for associations between air pollution and TL with potentially different direction of associations for short- and long-term exposures.
Show more [+] Less [-]Physiological and biochemical responses to aluminum-induced oxidative stress in two cyanobacterial species
2019
Hamed, Seham M. | Hassan, Sherif H. | Selim, Samy | Kumar, Amit | Khalaf, Sameh M.H. | Wadaan, Mohammed A.M. | Hozzein, Wael N. | AbdElgawad, Hamada
Phycoremediation technologies significantly contribute to solving serious problems induced by heavy metals accumulation in the aquatic systems. Here we studied the mechanisms underlying Al stress tolerance in two diazotrophic cyanobacterial species, to identify suitable species for Al phycoremediation. Al uptake as well as the physiological and biochemical responses of Anabaena laxa and Nostoc muscorum to 7 days Al exposure at two different concentrations i.e., mild (100 μM) and high dose (200 μM), were investigated. Our results revealed that A. laxa accumulated more Al, and it could acclimatize to long-term exposure of Al stress. Al induced a dose-dependent decrease in photosynthesis and its related parameters e.g., chlorophyll content (Chl a), phosphoenolpyruvate carboxylase (PEPC) and Ribulose‒1,5‒bisphosphate carboxylase/oxygenase (RuBisCo) activities. The affect was less pronounced in A. laxa than N. muscorum. Moreover, Al stress significantly increased cellular membrane damage as indicated by induced H₂O₂, lipid peroxidation, protein oxidation, and NADPH oxidase activity. However, these increases were lower in A. laxa compared to N. muscorum. To mitigate the impact of Al stress, A. laxa induced its antioxidant defense system by increasing polyphenols, flavonoids, tocopherols and glutathione levels as well as peroxidase (POX), catalase (CAT), glutathione reductase (GR) and glutathione peroxidase (GPX) enzymes activities. On the other hand, the antioxidant increases in N. muscorum were only limited to ascorbate (ASC) cycle. Overall, high biosorption/uptake capacity and efficient antioxidant defense system of A. laxa recommend its feasibility in the treatment of Al contaminated waters/soils.
Show more [+] Less [-]The effect of intensified illuminance and artificial light at night on fitness and susceptibility to abiotic and biotic stressors
2019
May, Dyllan | Shidemantle, Grascen | Melnick-Kelley, Quentin | Crane, Kelly | Hua, Jessica
Changing light conditions due to human activities represents an important emerging environmental concern. Although changes to natural light conditions can be independently detrimental, in nature, organisms commonly face multiple stressors. To understand the consequences of altered light conditions, we exposed a model amphibian (wood frog; Lithobates sylvaticus) to a control and two anthropogenic light conditions: intensified daytime illuminance and artificial light at night - ALAN (intensified daytime illuminance + extended photoperiod). We measured (1) metrics of fitness (hatching success as well as survival to, size at, and time to metamorphosis) (2) susceptibility (time to death) to a commonly co-occurring anthropogenic stressor, road salt (NaCl) and (3) susceptibility (infection load) to a common parasite (trematode). We also explored behavioral (swimming activity) and physiological (baseline corticosterone (CORT) release rates) changes induced by these light conditions, which may mediate changes in the other measured parameters. We found that both intensified daytime illuminance and ALAN reduced hatching success. In contrast, for amphibians that successfully hatched, neither treatment affected amphibian survival or time to metamorphosis but individuals exposed to ALAN were larger at metamorphosis. The light treatments also had marginal effects; individuals in ALAN treatments were more susceptible to NaCl and trematodes. Finally, tadpoles exposed to ALAN moved significantly less than tadpoles in the control and intensified daytime illuminance treatments, while light had no effect on CORT release rate. Overall, changes in light conditions, in particular ALAN, significantly impacted an amphibian model in laboratory conditions. This work underscores the importance of considering not only the direct effects of light on fitness metrics but also the indirect effects of light with other abiotic and biotic stressors. Anthropogenic-induced changes to light conditions are expected to continue increasing over time so understanding the diverse consequences of shifting light conditions will be paramount to protecting wildlife populations.
Show more [+] Less [-]Endocrine disrupting effects of tebuconazole on different life stages of zebrafish (Danio rerio)
2019
Li, Shuying | Sun, Qianqian | Wu, Qiong | Gui, Wenjun | Zhu, Guonian | Schlenk, Daniel
Tebuconazole is a widely used fungicide that has been detected in water ecosystems, of which the concentrations may affect the endocrine function of aquatic organisms. At present study, tissue-specific bioaccumulation of tebuconazole was found in ovary of adult zebrafish, indicating a potential risk of endocrine disruption. In order to evaluate the potential endocrine disrupting effects, three life stages (2 hpf (hours post-fertilization) −60 dpf (days post-fertilization), Stage I; 60–120 dpf, Stage II; 180–208 dpf, Stage III) of zebrafish (Danio rerio) were chronically exposed to tebuconazole at the concentrations ranging from 0.05 mg/L to 1.84 mg/L. Result showed that exposed to tebuconazole could lead to a male-biased sex differentiation in juvenile zebrafish and significant decrease of the percentage of germ cells in sexually-mature zebrafish. Egg production was significantly inhibited by 57.8% and 19.2% after Stage II- and Stage III-exposures, respectively. The contents of 17β-estradiol in gonad decreased by 63.5% when exposed to 0.20 mg/L tebuconazole at Stage II and by 49.5% after exposed to 0.18 mg/L tebuconazole at Stage III, respectively. For all stages exposure, reductions in 17β-estradiol/testosterone ratio were observed, indicating an imbalance in steroids synthesis. Additionally, tebuconazole reduced the expression of cyp19a, which was consistent with the decrease of E2 level. In overall, the present findings indicated that, playing as an anti-estrogen-like chemical, tebuconazole inhibited the expression of Cyp19, thereby impairing steroid hormones biosynthesis, leading to a diminished fecundity of zebrafish.
Show more [+] Less [-]Enantioselective toxic effects and environmental behavior of ethiprole and its metabolites against Chlorella pyrenoidosa
2019
Gao, Jing | Wang, Fang | Wang, Peng | Jiang, Wenqi | Zhang, Zhenhua | Liu, Donghui | Zhou, Zhiqiang
Insecticide ethiprole, the alternative of fipronil which has been restricted in many countries, may contaminant water bodies through surface runoff after agricultural application, however, the aquatic toxicity and environmental behavior of ethiprole is still unknown. In this study, five metabolites of ethiprole (ethiprole sulfone, ethiprole sulfide, ethiprole amide, desethylsulfinyl ethiprole and ethiprole sulfone amide) were synthesized and their toxic effects on photosynthetic pigment and antioxidase in aquatic plant Chlorella pyrenoidosa (C. pyrenoidosa) were evaluated on an enantiomeric level. Besides, the accumulation and metabolism of rac-ethiprole and its enantiomers in algae suspension and algae were studied. Ethiprole sulfide was found to be more toxic than ethiprole, with the 96h EC₅₀ value seven times lower than ethiprole. Enantioselective toxicity was observed with R-ethiprole more toxic than S-ethiprole. The contents of chlorophyll were significantly reduced by all the chemicals at higher concentrations, and the levels of protein, malondialdehyde (MDA) and the activity of antioxidant defense enzymes were dose-dependent. The half-life of rac-ethiprole in algae suspension was 13.6 days and ethiprole amide was the major metabolite. However, ethiprole sulfide was the main metabolite in algae, suggesting different metabolic pathways in algae suspension and algae. Enantioselective metabolism in algae suspension was found with S-ethiprole metabolized faster than R-ethiprole. The preferentially accumulated and metabolized of R-ethiprole in algae was observed and C. pyrenoidosa had limited capacity to convert one enantiomer into the other. These findings indicated the toxicity of ethiprole to C. pyrenoidosa is lower than fipronil. The individual enantiomers of chiral pollutants and their metabolites should be considered in risk assessments.
Show more [+] Less [-]Temporal and spatial stratification for the estimation of nocturnal long-term noise levels
2019
Quintero, G. | Romeu, J. | Balastegui, A.
Noise pollution in cities is mainly caused by the vehicular traffic but, depending on the place under assessment, it could be affected by the land use. For noise assessment and strategic noise mapping, the night period equivalent level (Lnight), which evaluates sleep disturbance, is one of the requirements of the European Directive 2002/49/EC to be presented for the equivalent time of one year. This research aims to find the influence of the land use in the weekdays stratification to improve the accuracy of the long-term noise level estimation for the night period. It is found that depending on the land use of the place under assessment, the weekdays temporal and spatial stratification could be affected by leisure activities. From a statistical analysis based on a clustering procedure of Lnight samples in 19 points, it is observed that both, temporal and spatial stratification depend on the intensity of the surrounding leisure activity, and not on traffic. Following these stratification criteria, a sampling method is presented that reduces by 47% the number of days needed to estimate the annual levels with respect to random sampling.
Show more [+] Less [-]