Refine search
Results 1-3 of 3
Novel water-resistant UV-activated oxygen indicator for intelligent food packaging Full text
2013
Vu, Chau Hai Thai | Won, Keehoon
For the first time, alginate polymer has been applied to prevent dyes from leaching out of colorimetric oxygen indicator films, which enable people to notice the presence of oxygen in the package in an economic and simple manner. The dye-based oxygen indicator film suffers from dye leaching upon contact with water. In this work, UV-activated visual oxygen indicator films were fabricated using thionine, glycerol, P25 TiO2, and zein as a redox dye, a sacrificial electron donor, UV-absorbing semiconducting photocatalyst, and an encapsulation polymer, respectively. When this zein-coated film was immersed in water for 24h, the dye leakage was as high as 80.80±0.45%. However, introduction of alginate (1.25%) as the coating polymer considerably diminished the dye leaching to only 5.80±0.06%. This is because the ion-binding ability of alginate could prevent the cation dye from leaching into water. This novel water-resistant UV-activated oxygen indicator was also successfully photo-bleached and regained colour fast in the presence of oxygen.
Show more [+] Less [-]Recovery of fish [Mackerel] water-solublue protein as food material by addition of polymer coagulants.
1992
Ookawa T. | Ninomiya K. | Takahashi K. | Tsuchiya T. | Matsumoto J.J.
A journey to the world of fascinating ZnO nanocomposites made of chitosan, starch, cellulose, and other biopolymers: Progress in recent achievements in eco-friendly food packaging, biomedical, and water remediation technologies Full text
2021
Mallakpour, Shadpour | Sirous, Fariba | Hussain, Chaudhery Mustansar
Green chemistry or in other words “green world” is referred to a sustainable environment using biocompatible, biodegradable, renewable, economical, and simple materials, and methods. Without any exaggeration, the exceptional chemical and physical properties of ZnO bionanocomposites beside various utilizations, make it vital materials in research and green chemistry field. Biocompatible ZnO nanoparticles with fascinating antimicrobial, physicochemical, as well as photocatalytic performance could be applied as a prominent candidate to reinforce diverse biopolymer matrixes, for instance, chitosan, starch, cellulose, gelatin, alginate, poly(hydroxyalkanoates), carrageenan, and so on. With a combination of advantageous properties of these materials, they could be illustrated specific utilizations in different areas. In this regard, the following context focuses on highlighting the recent achievements of this category of material on three important and widely used scopes: eco-friendly food packaging, biomedical specially wound dressings, and water remediation technologies.
Show more [+] Less [-]