Refine search
Results 1-10 of 16
Oil-in-water food emulsions stabilized by tuna proteins | Emulsiones alimentarias aceite-en-agua estabilizadas con proteínas de atún Full text
2010
Ruiz Márquez, D., Universidad de Huelva (España). Facultad de Ciencias Experimentales | Partal, P., Universidad de Huelva (España). Facultad de Ciencias Experimentales | Franco, J.M., Universidad de Huelva (España). Facultad de Ciencias Experimentales | Gallegos, C., Universidad de Huelva (España). Facultad de Ciencias Experimentales
El presente trabajo se ha centrado en el desarrollo de emulsiones alimentarias aceite-en-agua estabilizadas con proteínas de atún. Específicamente, se ha analizado la influencia del método de conservación de las proteínas aisladas (liofilización, congelación) y de las condiciones de procesado seleccionadas sobre el comportamiento reológico y la microestructura de dichas emulsiones. Se han preparado emulsiones aceite en agua (con un contenido del 70% en peso de aceite) estabilizadas con proteínas de atún. La concentración de emulsionante usada ha sido 0,50% en peso. El comportamiento reológico de estas emulsiones no depende significativamente del método de conservación de la proteína empleado. Por otra parte, un aumento de la velocidad de agitación durante el proceso de manufactura de la emulsión da lugar a una disminución continua del tamaño medio de gota y a un aumento de las funciones viscoelásticas dinámicas, menos significativo a medida que aumenta dicha velocidad de agitación. | This work is focused on the development of o/w salad dressing-type emulsions stabilized by tuna proteins. The influence of protein conservation methods after the extraction process (freezing or liofilization) on the rheological properties and microstructure of these emulsions was analyzed. Processing variables during emulsification were also evaluated. Stable emulsions with adequate rheological and microstructural characteristics were prepared using 70% oil and 0.50% tuna proteins. From the experimental results obtained, we may conclude that emulsion rheological properties are not significantly affected by the protein conservation method selected. On the contrary, an increase in homogenization speed favours an increase in the values of the linear viscoelastic functions. Less significant is the fact that as agitation speed increases further, mean droplet size steadily decreases.
Show more [+] Less [-]Rheological and microstructural study of concentrated sunflower oil in water emulsions stabilized by food proteins | Estudio reológico y microestructural de emulsiones concentradas de aceite de girasol en agua estabilizadas con proteínas agroalimentarias Full text
2008
Guerrero, A. | Bengoechea, C. | Romero, A. | Cordobés, F., Universidad de Sevilla (España). Facultad de Química
Se ha realizado un estudio de la distribución del tamaño de gotas y de las propiedades viscoelásticas lineales de emulsiones concentradas de aceite en agua, estabilizadas con diferentes proteínas (cangrejo, gluten y soja). Los sistemas estudiados siempre presentan un comportamiento típico de emulsiones altamente concentradas con un alto grado de floculación. Se ha observado que un incremento de la velocidad de agitación empleada durante la preparación o de la concentración de emulsionante dan lugar a un aumento de los módulos viscoelásticos (G' y G") y a una disminución del tamaño de gotas. Por tanto se produce un reforzamiento del entramado formado por asociación de las gotas de fase dispersa y como consecuencia, un aumento en la estabilidad de las emulsiones. | Droplet Size Distribution (DSD) and linear viscoelastic properties of concentrated o/w emulsions stabilized by different proteins (crayfish, gluten and soybean) have been studied. A typical behaviour of highly concentrated emulsions with a high degree of flocculation has been found. An increase in energy input for the emulsification process or in emulsifier concentration leads to an increase in both viscoelastic moduli (G', G") as well as to a decrease in droplet size. Thus, an enhancement of the entanglement network produced by association of protein molecules that are surrounding oil droplets or are present in the continuous phase takes place, leading to a significant improvement of emulsion stability.
Show more [+] Less [-]Oil-in-water food emulsions stabilized by tuna proteins Full text
2010
D. Ruiz-Márquez | P. Partal | J. M. Franco | C. Gallegos
This work is focused on the development of o/w salad dressing-type emulsions stabilized by tuna proteins. The influence of protein conservation methods after the extraction process (freezing or liofilization) on the rheological properties and microstructure of these emulsions was analyzed. Processing variables during emulsification were also evaluated. Stable emulsions with adequate rheological and microstructural characteristics were prepared using 70% oil and 0.50% tuna proteins. From the experimental results obtained, we may conclude that emulsion rheological properties are not significantly affected by the protein conservation method selected. On the contrary, an increase in homogenization speed favours an increase in the values of the linear viscoelastic functions. Less significant is the fact that as agitation speed increases further, mean droplet size steadily decreases.
Show more [+] Less [-]Study on filtration characteristics of crude lecithin/water emulsion for food oily waste water treatment
1999
Kawakatsu, T. (Tohoku Univ., Sendai (Japan)) | Nakajima, M. | Ichikawa, S. | Nabetani, H. | Nakajima, M.
As for oily water treatment in food industries, the membrane technology has a large potential to reduce the operation time, equipment space and total costs. Using crude lecithin/water emulsion as a model of oily waste water, filtration characteristics on the flux and total organic carbon (TOC) rejection were investigated with a wide range of membranes in reverse osmosis, nanofiltration, ultrafiltration, and microfiltration. Constant flux and TOC rejection were obtained in crossflow filtration with hydrophilic membranes having smaller pores than the emulsion droplets (1-2 mum). Free phospholipids were removed with reverse osmosis membranes or nanofiltration membranes having high NaCl rejection abilities. When microfiltration membranes having larger pores than the emulsion droplets were used, the membrane characteristics such as the pore structure and hydrophobicity largely affected the filtration characteristics: asymmetric membranes gave relatively high fluxes when its loose side was used against the feed emulsion as a depth filter, symmetric membranes having a spongoid pore structure and a pore size similar to the emulsion droplets brought about almost 0 flux owing to an extreme progress of pore blocking, hydrophobic membranes of adequate pore sizes showed a possibility to result in the negative TOC rejection
Show more [+] Less [-]Assessment of partial coalescence in whippable oil-in-water food emulsions Full text
2016
Petrut, Raul Flaviu | Danthine, Sabine | Blecker, Christophe
peer reviewed | Partial coalescence influences to a great extent the properties of final food products such as ice cream and whipped toppings. In return, the partial coalescence occurrence and development are conditioned, in such systems, by the emulsion's intrinsic properties (e.g. solid fat content, fat crystal shape and size), formulation (e.g. protein content, surfactants presence) and extrinsic factors (e.g. cooling rate, shearing). A set of methods is available for partial coalescence investigation and quantification. These methods are critically reviewed in this paper, balancing the weaknesses of themethods in terms of structure alteration (for turbidity, dye dilution, etc.) and assumptions made for mathematical models (for particle size determination) with their advantages (good repeatability, high sensitivity, etc.).With the methods proposed in literature, the partial coalescence investigations can be conducted quantitatively and/or qualitatively. Good correlation were observed between some of the quantitative methods such as dye dilution, calorimetry, fat particle size;while a poor correlation was found in the case of solvent extraction method with other quantitativemethods. The most suitableway for partial coalescence quantification was implied to be the fat particle size method, which would give results with a high degree of confidence if used in combination with a microscopic technique for the confirmation of partial coalescence as the main destabilization mechanism.
Show more [+] Less [-]Kinetics of demulsification of food protein-stabilized oil-in-water emulsions.
1989
Elizalde B.E. | Pilosof A.M.R. | Dimier L. | Bartholomai G.B.
Linear viscoelastic behaviour of oil-in-water food emulsions stabilised by tuna-protein isolates Full text
2013
Ruiz-Márquez, D | Partal, P | Franco, JM | Gallegos, C
This work deals with the manufacture of oil-in-water food emulsions stabilised by tuna proteins. The influence of protein and oil concentrations on the linear viscoelastic properties and microstructure of these emulsions was analysed. Stable emulsions with suitable linear viscoelastic response and microstructural characteristics were formulated with 70 wt.% oil and, at least, 0.25 wt.% tuna protein. Similarly, emulsions with oil concentrations between 45 and 70 wt.% were prepared using 0.50 wt.% protein. All these emulsions showed a predominantly elastic response in the linear viscoelastic region and a well-developed plateau region in its mechanical spectrum. Rheological and droplet size distribution results pointed out an extensive droplet flocculation, due to interactions among emulsifier molecules located at the oil–water interface of adjacent droplets. As a result, the linear viscoelastic behaviour was controlled by protein–protein interactions, allowing the use of the plateau modulus to successfully normalise both the storage and loss moduli as a function of frequency onto a master curve, irrespective of the selected emulsion formulation.
Show more [+] Less [-]Rheological and microstructural study of concentrated sunflower oil in water emulsions stabilized by food proteins Full text
2008
C. Bengoechea | A. Romero | F. Cordobés | A. Guerrero
Droplet Size Distribution (DSD) and linear viscoelastic properties of concentrated o/w emulsions stabilized by different proteins (crayfish, gluten and soybean) have been studied. A typical behaviour of highly concentrated emulsions with a high degree of flocculation has been found. An increase in energy input for the emulsification process or in emulsifier concentration leads to an increase in both viscoelastic moduli (G’, G’’) as well as to a decrease in droplet size. Thus, an enhancement of the entanglement network produced by association of protein molecules that are surrounding oil droplets or are present in the continuous phase takes place, leading to a significant improvement of emulsion stability.
Show more [+] Less [-][Influence of processing in the stability of oil in water food emulsions with low oil content]
1994
Franco, J.Ma. | Algeciras, J.L. | Trujillo, J.E. | Flores, V. | Gallegos, C.
Influence of oil and emulsifier concentrations on the rheological properties of oil-in-water salad dressing food emulsions Full text
1995
José María Franco | Antonio Guerrero | Críspulo Gallegos
The viscous and viscoelastic behaviour of food emulsions containing a mixture of egg yolk and sucrose stearate as a function of oil and sucrose stearate concentrations were studied. Oil concentrations ranged between 40- 55% w/w for emulsions containing 5% w/w sucrose stearate and sucrose ester concentrations varied between 0-10% w/w for emulsions containing 50% w/w oil. steady flow, linear oscillatory shear tests and droplet size distribution measurements were carried out. An increase in oil or emulsifier concentration produced an increase in both the steady-state viscosity and in the viscoelastic functions. The results have been explained on the basis of the relationship between the structural parameters and the rheology of the emulsions studied.
Show more [+] Less [-]