Refine search
Results 1-3 of 3
Non-thermal plasma-activated water inactivation of food-borne pathogen on fresh produce Full text
2015
Ma, Ruonan | Wang, Guomin | Tian, Ying | Wang, Kaile | Zhang, Jue | Fang, Jing
Non-thermal plasma has been widely considered to be an effective method for decontamination of foods. Recently, numerous studies report that plasma-activated water (PAW) also has outstanding antibacterial ability. This study presents the first report on the potential of PAW for the inactivation of Staphylococcus aureus (S. aureus) inoculated on strawberries. PAW treatments achieved a reduction of S. aureus ranging from 1.6 to 2.3 log at day-0 storage, while 1.7 to 3.4 log at day-4 storage. The inactivation efficiency depended on the plasma-activated time for PAW generation and PAW-treated time of strawberries inoculated with S. aureus. LIVE/DEAD staining and scanning electron microscopy results confirm that PAW could damage the bacterial cell wall. Moreover, optical emission spectra and oxidation reduction potential results demonstrate the inactivation is mainly attributed to oxidative stress induced by reactive oxygen species in PAW. In addition, no significant change was found in color, firmness and pH of the PAW treated strawberries. Thus, PAW can be a promising alternative to traditional sanitizers applied in the fresh produce industry.
Show more [+] Less [-]Efficacy of electrolysed oxidizing water in inactivating Vibrio parahaemolyticus on kitchen cutting boards and food contact surfaces Full text
2006
Chiu, T.-H. | Duan, J. | Liu, C. | Su, Y.-C.
To determine the efficacy of electrolysed oxidizing (EO) water in inactivating Vibrio parahaemolyticus on kitchen cutting boards and food contact surfaces. Cutting boards (bamboo, wood and plastic) and food contact surfaces (stainless steel and glazed ceramic tile) were inoculated with V. parahaemolyticus. Viable cells of V. parahaemolyticus were detected on all cutting boards and food contact surfaces after 10 and 30 min, respectively, at room temperatures. Soaking inoculated food contact surfaces and cutting boards in distilled water for 1 and 3 min, respectively, resulted in various reductions of V. parahaemolyticus, but failed to remove the organism completely from surfaces. However, the treatment of EO water [pH 2·7, chlorine 40 ppm, oxidation-reduction potential 1151 mV] for 30, 45, and 60 s, completely inactivated V. parahaemolyticus on stainless steel, ceramic tile, and plastic cutting boards, respectively. EO water could be used as a disinfecting agent for inactivating V. parahaemolyticus on plastic and wood cutting boards and food contact surfaces. Rinsing the food contact surfaces with EO water or soaking cutting boards in EO water for up to 5 min could be a simple strategy to reduce cross-contamination of V. parahaemolyticus during food preparation.
Show more [+] Less [-]Effect of Plasma-Activated Water on the Microbial Decontamination and Food Quality of Thin Sheets of Bean Curd Full text
2019
Yafei Zhai | Shengnan Liu | Qisen Xiang | Ying Lyu | Ruiling Shen
Thin sheets of bean curd may serve as an excellent source of nutrition for microorganisms and are therefore prone to contamination, which can be harmful to public health. This study evaluated the influence of plasma-activated water (PAW) on the microbial load and food quality of thin sheets of bean curd. Treatment for 30 min with PAW that was activated for 90 s reduced the microbial count by 1.26 and 0.91 log<sub>10</sub> CFU/g for total aerobic bacteria and total yeasts and molds on thin sheets of bean curd, respectively. The effect of PAW on microbial inactivation strongly depended on the activation time for PAW generation and the soaking time of the thin sheets of bean curd in PAW. Further, PAW could maintain total isoflavone content, sensory properties, and most of the textural properties of the thin sheets of bean curd. Although PAW treatments caused significant changes in color parameters of the thin sheets of bean curd, the appearance acceptance was not significantly influenced. This work highlights the potential application of PAW in the microbial decontamination of thin sheets of bean curd.
Show more [+] Less [-]