Refine search
Results 1-4 of 4
Instrumentation in food, water, and wastewater industries
1980
[Example of use of the membrane techniques to reduce water consumption and effluents in food industry]
1996
Duvivier, L. (Laborelec, Linkebeek (Belgium). Service Eaux de Refrigeration et Eaux residuaires) | Calay, J.C. | Lesage, G.
Preparation and optimization of submicron chitosan capsules by water-based electrospraying for food and bioactive packaging applications Full text
2017
Sreekumar, Sruthi | Lemke, Philipp | Moerschbacher, Bruno M | Torres-Giner, Sergio | Lagaron, Jose M
In the present study, a well-defined set of chitosans, with different degrees of acetylation (DA) and degrees of polymerization (DP), were processed by solution electrospraying from a water-based solvent. The solution properties, in terms of surface tension, conductivity, viscosity, and pH, were characterized and related to the physico-chemical properties of the chitosans. It was observed that both DA and DP values of a given chitosan, in combination with biopolymer concentration, mainly determined solution viscosity. This was, in turn, the major driving factor that defined the electrosprayability of chitosan. In addition, the physico-chemical properties of chitosans highly influenced solution conductivity and results indicated that the chitosan solutions with low or low-to-medium values of conductivity were the most optimal for electrospraying. The results obtained here also demonstrate that a good process control can be achieved by adjusting the working conditions, i.e . applied voltage, flow-rate, and tip-to-collector distance. Finally, it was also shown that electrosprayability of chitosan with inadequate physico-chemical properties can be improved by solution mixing of very different kinds of this polysaccharide. The resultant electrosprayed submicron chitosan capsules can be applied for encapsulation of food additives and to develop bioactive coatings of interest in food packaging, where these particles alone or containing functional ingredients can be released from the package into the food to promote a health benefit.
Show more [+] Less [-]Determination of which virus to use as a process control when testing for the presence of hepatitis A virus and norovirus in food and water Full text
2015
Noroviruses (genogroup I (NoV GI) and genogroup II (NoV GII)) and the hepatitis A virus (HAV) are frequently involved in foodborne infections worldwide. They are mainly transmitted via the fecal–oral route, direct person-to-person contact or consumption of contaminated water and foods. In food virology, detection methods are currently based on identifying viral genomes using real-time reverse transcriptase PCR (RT-qPCR). One of the general requirements for detecting these viruses in food involves the use of a process control virus to monitor the quality of the entire viral extraction procedure as described in the ISO/TS 15216-1 and 15216-2 standards published in 2013. The selected process control virus should have similar morphological and physicochemical properties as the screened pathogenic virus and thus have the potential to provide comparable extraction efficiency.The aim of this study was to determine which virus should be used for process control, murine norovirus (MNV-1) or Mengovirus, when testing for the presence of HAV, NoV GI and NoV GII in bottled water, lettuce and semi-dried tomatoes. Food samples were spiked with HAV, NoV GI or NoV GII alone or in the presence of MNV-1 or Mengovirus. Recovery rates of each pathogenic virus were compared to those of both process control viruses using a multiple comparison procedure. Neither process control virus influenced the recovery of pathogenic virus regardless of the type of food matrix. MNV-1 was the most appropriate virus for validating the detection of HAV and NoV GII in all three food matrices as well as NoV GI in lettuce. Mengovirus proved to be the most appropriate control for NoV GI detection in bottled water and semi-dried tomatoes.The process control virus is essential for validating viral detection in food and the choice of virus depends on food type and the screened pathogenic virus.
Show more [+] Less [-]