Transgenerational effects of cyanobacterial toxins on a tropical micro-crustacean Daphnia lumholtzi across three generations
2018
Dao, Thanh-Son | Vo, Thi-My-Chi | Wiegand, Claudia | Bui, Ba-Trung | Dinh, Khuong V | Ho Chi Minh City University of Technology (HCMUT) | Duy Tan University (DTU) | Ecosystèmes, biodiversité, évolution [Rennes] (ECOBIO) ; Université de Rennes (UR)-Institut Ecologie et Environnement (INEE) ; Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Rennes (OSUR) ; Université de Rennes (UR)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Centre National de la Recherche Scientifique (CNRS) | Institute for Environment and Resources ; Vietnam National University - Ho Chi Minh City (VNU-HCM) | Nha Trang University | Danmarks Tekniske Universitet = Technical University of Denmark (DTU) | 106-NN.04-2014.69, National Foundation for Science and Technology Development
International audience
Mostrar más [+] Menos [-]Inglés. Climate change and human activities induce an increased frequency and intensity of cyanobacterial blooms which could release toxins to aquatic ecosystems. Zooplankton communities belong to the first affected organisms, but in tropical freshwater ecosystems, this issue has yet been poorly investigated. We tested two questions (i) if the tropical Daphnia lumholtzi is capable to develop tolerance to an ecologically relevant concentration of purified microcystin-LR and microcystins from cyanobacterial extract transferable to F1 and F2 generations? And (ii) would F1 and F2 generations recover if reared in toxin-free medium? To answer these questions, we conducted two full factorial mutigenerational experiments, in which D. lumholtzi was exposed to MC-LR and cyanobacterial extract at the concentration of 1 μg L microcystin continuously for three generations. After each generation, each treatment was spit into two one reared in the control (toxin free) while the other continued in the respective exposure. Fitness-related traits including survival, maturity age, body length, and fecundity of each D. lumholtzi generation were quantified. Though there were only some weak negative effects of the toxins on the first generation (F0), we found strong direct, accumulated and carried-over impacts of the toxins on life history traits of D. lumholtzi on the F1 and F2, including reductions of survival, and reproduction. The maturity age and body length showed some inconsistent patterns between generations and need further investigations. The survival, maturity age (for extract), and body length (for MC-LR) were only recovered when offspring from toxin exposed mothers were raised in clean medium for two generations. Chronic exposure to long lasting blooms, even at low density, evidently reduces survival of D. lumholtzi in tropical lakes and reservoirs with ecological consequences.
Mostrar más [+] Menos [-]Palabras clave de AGROVOC
Información bibliográfica
Este registro bibliográfico ha sido proporcionado por Institut national de la recherche agronomique