Oxic urban rivers as a potential source of atmospheric methane
2022
Zhao, Feng | Zhou, Yongqiang | Xu, Hai | Zhu, Guangwei | Zhan, Xu | Zou, Wei | Zhu, Mengyuan | Kang, Lijuan | Zhao, Xingchen
Urban rivers play a vital role in global methane (CH₄) emissions. Previous studies have mainly focused on CH₄ concentrations in urban rivers with a large amount of organic sediment. However, to date, the CH₄ concentration in gravel-bed urban rivers with very little organic sediment has not been well documented. Here, we collected water samples from an oxic urban river (Xin'an River, China; annual mean dissolved oxygen concentration was 9.91 ± 1.99 mg L⁻¹) with a stony riverbed containing very little organic sediment. Dissolved CH₄ concentrations were measured using a membrane inlet mass spectrometer to investigate whether such rivers potentially act as an important source of atmospheric CH₄ and the corresponding potential drivers. The results showed that CH₄ was supersaturated at all sampling sites in the five sampling months. The mean CH₄ saturation ratio (ratio of river dissolved CH₄ concentration to the corresponding CH₄ concentration that is in equilibrium with the atmosphere) across all sampling sites in the five sampling months was 204 ± 257, suggesting that the Xin'an River had a large CH₄ emission potential. The CH₄ concentration was significantly higher in the downstream river than in the upstream river (p < 0.05), which suggested that human activities along the river greatly impacted the CH₄ level. Statistical analyses and incubation experiments indicated that algae can produce CH₄ under oxic conditions, which may contribute to the significantly higher CH₄ concentration in August 2020 (p < 0.001) when a severe algal bloom occurred. Furthermore, other factors, such as heavy rainfall events, dissolved organic carbon concentration, and water temperature, may also be vital factors affecting CH₄ concentration. Our study enhances the understanding of dissolved CH₄ dynamics in oxic urban rivers with very little organic sediment and further proposes feasible measures to control the CH₄ concentration in urban rivers.
Mostrar más [+] Menos [-]Palabras clave de AGROVOC
Información bibliográfica
Este registro bibliográfico ha sido proporcionado por National Agricultural Library