Impact of metal-oxide nanoparticles on growth, physiology and yield of tomato (Solanum lycopersicum L.) modulated by Azotobacter salinestris strain ASM
2021
Ahmed, Bilal | Syed, Asad | Rizvi, Asfa | Shahid, Mohammad | Bahkali, Ali H. | Khan, Mohammad Saghir | Musarrat, Javed
The current study for the first time demonstrates the interference of a free-living, N₂-fixing, and nanoparticle (NP) tolerant Azotobacter salinestris strain ASM recovered from metal-polluted soil with tomato plant-metal oxide NPs (ZnO, CuO, Al₂O₃, and TiO₂) interactions in a sandy clay loam soil system with bulk materials as control. Tomato plants were grown till full maturity in soils amended with 20–2000 mg kg⁻¹ of each metal-oxide NP with and without seed biopriming and root-inoculation of A. salinestris. A. salinestris was found metabolically active, producing considerably high amounts of bioactive indole-3-acetic-acid, morphologically unaffected, and with low alteration of cell membrane permeability under 125–1500 μgml⁻¹ of NPs. However, ZnO-NPs slightly alter bacterial membrane permeability. Besides, A. salinestris secreted significantly higher amounts of extracellular polymeric substance (EPS) even under NP exposure, which could entrap the NPs and form metal-EPS complex as revealed and quantified by SEM-EDX. NPs were also found adsorbed on bacterial biomass. EPS stabilized the NPs and provided negative zeta potential to NPs. Following soil application, A. salinestris improved the plant performance and augmented the yield of tomato fruits and lycopene content even in NPs stressed soils. Interestingly, A. salinestris inoculation enhanced photosynthetic pigment formation, flower attributes, plant and fruit biomass, and reduced proline level. Bacterial inoculation also reduced the NP’s uptake and accumulation significantly in vegetative organs and fruits. The organ wise order of NP’s internalization was roots > shoots > fruits. Conclusively, A. salinestris inoculation could be an alternative to increase the production of tomato in metal-oxide NPs contaminated soils.
Mostrar más [+] Menos [-]Palabras clave de AGROVOC
Información bibliográfica
Este registro bibliográfico ha sido proporcionado por National Agricultural Library