Synthesis of hierarchically structured ɤ-Fe2O3–PPy nanocomposite as effective adsorbent for cationic dye removal from wastewater
2020
Gopal, Ramu Adam | Song, Minjung | Yang, Daejeong | Lkhagvaa, Telmenbayar | Chandrasekaran, Sivaraman | Choi, Dongjin
Industrial dye effluents, which are a major wastage component that enter the natural environment, pose a significant health risk to human and aquatic life. Therefore, the effective removal of dye effluents is a major concern. Against this backdrop, in this study, a low-cost, earth-abundant, and ecofriendly ɤ-Fe₂O₃–PPy nanocomposite was prepared employing the conventional hydrothermal method. The morphology, functional groups, and elemental composition of ɤ-Fe₂O₃–PPy were characterized by XRD, SEM, XPS, and FTIR studies. Under optimized conditions, the prepared novel ɤ-Fe₂O₃–PPy nanocomposite showed a high methylene blue (MB) adsorption capacity of 464 mg/g, which is significantly higher than that of existing adsorbents such as CNTs and polymer-modified CNTs. The adsorption parameters such as pH, adsorbent dosage, and ionic strength were optimized to enhance the MB adsorption capacity. The adsorption results revealed that MB is adsorbed onto the adsorbent surface via electrostatic interactions, hydrogen bonding, and chemical binding interactions. In terms of practical application, the adsorbent’s adsorption–desorption ability in conjunction with magnetic separation was investigated; the prepared ɤ-Fe₂O₃–PPy nanocomposite exhibited excellent adsorption and desorption efficiencies over more than seven adsorption–desorption cycles.
Mostrar más [+] Menos [-]Palabras clave de AGROVOC
Información bibliográfica
Este registro bibliográfico ha sido proporcionado por National Agricultural Library