Efficient Removal of Lead from Water Using Stabilized Iron Sulfide Nanoparticles: Effectiveness and Effects of Stabilizer
2019
Zhao, Yang | Tian, Shuting | Gong, Yanyan | Zhao, Dongye
Fully stabilized FeS nanoparticles were prepared with water-soluble carboxymethyl cellulose (CMC) as a stabilizer, and investigated for adsorption of lead (Pb²⁺) ions from simulated drinking water. The optimum particle stabilization was achieved using 0.0025 wt.% of CMC for 50 mg/L FeS (i.e., CMC-to-FeS molar ratio of 0.0005). The particle stabilization technique increased lead removal from 78.1% to 90.3%. However, further increasing the CMC-to-FeS molar ratio to 0.0025 diminished the removal. Rapid adsorption kinetics of Pb by CMC-FeS was observed with an equilibrium time of 240 min. The kinetic data was adequately fitted by a pseudo-second-order kinetic model. The adsorption isotherm showed a sigmoidal S-shape due to complexation of Pb with soluble CMC molecules, and the Sigmoidal isotherm model well fitted the adsorption isotherm data with a maximum monolayer adsorption capacity of 77.0 mg/g. FTIR and XRD analyses indicated that both surface complexation and chemical precipitation (in the form of PbS) were the dominant adsorption mechanisms. Pb uptake was enhanced with increasing CMC-FeS dosage from 10 to 125 mg/L and increasing pH from 4.5 to 8.5. The material can perform well under typical concentrations of a model humic acid (HA) and salts. Yet, unusually high concentrations of HA or hardness ions may exerted elevated inhibitive effect. The findings indicated that CMC-stabilized FeS nanoparticles are promising for effective immobilization of lead in contaminated water and soil.
Mostrar más [+] Menos [-]Palabras clave de AGROVOC
Información bibliográfica
Este registro bibliográfico ha sido proporcionado por National Agricultural Library