Winter Rye Cover Crop Impacts on Runoff Water Quality in a Northern New York (USA) Tile-Drained Maize Agroecosystem
2020
Griffith, Keegan E. | Young, Eric O. | Klaiber, Laura B. | Kramer, Stephen R.
Nonpoint source phosphorus (P) and nitrogen (N) pollution from agriculture is a global concern. Planting a cover crop after harvesting annual crops such as maize may help mitigate nutrient transport risk to surface and groundwater. Few studies have focused on the impact of a winter rye cover crop on both surface runoff (SR) and tile drainage (TD) water quality. Here, we measured N and P losses in SR and TD from maize plots grown with and without a winter rye cover crop. Four plots (46 × 23 m) in northern New York, USA, equipped with automated SR and TD flow monitoring were planted with winter rye (Secale cereal) in 2016 and 2017 after maize silage harvest. Plots were managed as typical silage fields for dairy farms in the region and received fertilizer and manure applications. Dissolved reactive P (DRP), total P (TP), nitrate-N, total N (TN), and total suspended solids (TSS) loads were monitored from 4/7/16 to 6/29/17. Cumulative SR (volumetric depth equivalent) was 1.8-fold lower for rye compared to control plots. Although runoff and loading were variable, cumulative TSS, TP, and DRP losses were approximately 3-fold lower for rye plots compared to control. Cumulative TN and nitrate-N loads for TD were similar; however, cumulative TN loss for SR was lower for rye plots. Surface runoff was the main pathway of P loss (> 90% of DRP and TP loss) with > 90% of cumulative P exported from 2017 snowmelt events. Results suggest winter rye mitigated N and P transport risk in SR compared to the common practice of leaving maize silage fields bare after harvest.
Mostrar más [+] Menos [-]Palabras clave de AGROVOC
Información bibliográfica
Este registro bibliográfico ha sido proporcionado por National Agricultural Library