2,4,6-Trinitrotoluene mineralization and bacterial production rates of natural microbial assemblages from coastal sediments
2011
Montgomery, Michael T. | Coffin, Richard B. | Boyd, Thomas J. | Smith, Joseph P. | Walker, Shelby E. | Osburn, Christopher L.
The nitrogenous energetic constituent, 2,4,6-Trinitrotoluene (TNT), is widely reported to be resistant to bacterial mineralization (conversion to CO₂); however, these studies primarily involve bacterial isolates from freshwater where bacterial production is typically limited by phosphorus. This study involved six surveys of coastal waters adjacent to three biome types: temperate broadleaf, northern coniferous, and tropical. Capacity to catabolize and mineralize TNT ring carbon to CO₂ was a common feature of natural sediment assemblages from these coastal environments (ranging to 270+/−38 μg C kg⁻¹ d⁻¹). More importantly, these mineralization rates comprised a significant proportion of total heterotrophic production. The finding that most natural assemblages surveyed from these ecosystems can mineralize TNT ring carbon to CO₂ is consistent with recent reports that assemblage components can incorporate TNT ring carbon into bacterial biomass. These data counter the widely held contention that TNT is recalcitrant to bacterial catabolism of the ring carbon in natural environments.
Mostrar más [+] Menos [-]Palabras clave de AGROVOC
Información bibliográfica
Este registro bibliográfico ha sido proporcionado por National Agricultural Library