Oxidative injury and antioxidant enzymes regulation in arsenic-exposed seedlings of four Brassica napus L. cultivars
2015
Farooq, Muhammad A. | Li, Lan | Baṣārat Alī, Es. | Gill, Rafaqat A. | Wang, Jian | Ali, Shafaqat | Gill, Muhammad B. | Zhou, Weijun
Environmental contamination due to arsenic (As) has become a major risk throughout the world; this affects plant growth and productivity. Its accumulation in food chain may pose a severe threat to organisms. The present study was carried out to observe the toxic effects of As (0, 50, 100, and 200 μM) on physiological and biochemical changes in four Brassica napus cultivars (ZS 758, Zheda 619, ZY 50, and Zheda 622). Results showed that As toxicity provoked a significant inhibition in growth parameters of B. napus cultivars and this reduction was more obvious in cultivar Zheda 622. The highest concentration of MDA, H₂O₂, and O₂ ⁻ contents in both leaf and root tissues were observed at 200 μM As level, and a gradual decrease was observed at lower concentrations. Increasing As concentration gradually decreased chlorophyll and carotenoids contents. Activity of antioxidant enzymes such as SOD, CAT, APX, GR, and GSH was positively correlated with As treatments in all cultivars. The microscopic study of leaves and roots at 200 μM As level showed the disorganization in cell organelles. Disturbance in the morphology of chloroplast, broken cell wall, increase in size, and number of starch grains and immature nucleus were found in leaf ultrastructures under higher concentration of As. Moreover, damaged nucleus, diffused cell wall, enlarged vacuoles, and a number of mitochondria were observed in root tip cells at 200 μM As level. These results suggest that B. napus cultivars have efficient mechanism to tolerate As toxicity, as evidenced by an increased level of antioxidant enzymes.
Mostrar más [+] Menos [-]Palabras clave de AGROVOC
Información bibliográfica
Este registro bibliográfico ha sido proporcionado por National Agricultural Library