Heterogeneous HONO formation deteriorates the wintertime particulate pollution in the Guanzhong Basin, China
2022
Li, Xia | Bei, Naifang | Wu, Jiarui | Wang, Ruonan | Liu, Suixin | Liu, Lang | Jiang, Qian | Tie, Xuexi | Molina, Luisa T. | Li, Guohui
Despite implementation of strict emission mitigation measures since 2013, heavy haze with high levels of secondary aerosols still frequently engulfs the Guanzhong Basin (GZB), China, during wintertime, remarkably impairing visibility and potentially causing severe health issues. Although the observed low ozone (O₃) concentrations do not facilitate the photochemical formation of secondary aerosols, the measured high nitrous acid (HONO) level provides an alternate pathway in the GZB. The impact of heterogeneous HONO sources on the wintertime particulate pollution and atmospheric oxidizing capability (AOC) is evaluated in the GZB. Simulations by the Weather Research and Forecast model coupled with Chemistry (WRF-Chem) reveal that the observed high levels of nitrate and secondary organic aerosols (SOA) are reproduced when both homogeneous and heterogeneous HONO sources are considered. The heterogeneous sources (HET-sources) contribute about 98% of the near-surface HONO concentration in the GZB, increasing the hydroxyl radical (OH) and O₃ concentration by 39.4% and 22.0%, respectively. The average contribution of the HET-sources to SOA, nitrate, ammonium, and sulfate in the GZB is 35.6%, 20.6%, 12.1%, and 6.0% during the particulate pollution episode, respectively, enhancing the mass concentration of fine particulate matters (PM₂.₅) by around 12.2%. Our results suggest that decreasing HONO level or the AOC becomes an effective pathway to alleviate the wintertime particulate pollution in the GZB.
Mostrar más [+] Menos [-]Palabras clave de AGROVOC
Información bibliográfica
Este registro bibliográfico ha sido proporcionado por National Agricultural Library