Optical spectroscopic and reverse-phase HPLC analyses of Hg(II) binding to phytochelatins
1996
Mehra, R.K. | Miclat, J. | Kodati, V.R. | Abdullah, R. | Hunter, T.C. | Mulchandani, P.
Optical spectroscopy and reverse-phase HPLC were used to investigate the binding of Hg(II) to plant metal-binding peptides (phytochelatins) with the structure (gammaGlu-Cys)2Gly, (gammaGlu-Cys)3Gly and (gammaGlu-Cys)4Gly. Glutathione-mediated transfer of Hg(II) into phytochelatins and the transfer of the metal ion from one phytochelatin to another was also studied using reverse-phase HPLC. The saturation of Hg(II)-induced bands in the UV/visible and CD spectra of (gammaGlu-Cys)2Gly suggested the formation of a single Hg(II)-binding species of this peptide with a stoichiometry of one metal ion per peptide molecule. The separation of apo-(gammaGlu-Cys)2Gly from its Hg(II) derivative on a C18 reverse-phase column also indicated the same metal-binding stoichiometry. The UV/visible spectra of both (gammaGlu-Cys)3Gly and (gammaGlu-Cys)4Gly at pH 7.4 showed distinct shoulders in the ligand-to-metal charge-transfer region at 280-290 nm. Two distinct Hg(II)-binding species, occurring at metal-binding stoichiometries of around 1.25 and 2.0 Hg(II) ions per peptide molecule, were observed for (gammaGlu-Cys)3Gly. These species exhibited specific spectral features in the charge-transfer region and were separable by HPLC. Similarly, two main Hg(II)binding species of (gammaGlu-Cys)4Gly were observed by UV/visible and CD spectroscopy at metal-binding stoichiometries of around 1.25 and 2.5 respectively. Only a single peak of Hg(II)-(gammaGlu-Cys)4Gly complexes was resolved under the conditions used for HPLC. The overall Hg(II)binding stoichiometries of phytochelatins were similar at pH 2.0 and at pH 7.4, indicating that pH did not influence the final Hg(II)-binding capacity of these peptides. The reverse-phase HPLC assays indicated a rapid transfer of Hg(II) from glutathione to phytochelatins. These assays also demonstrated a facile transfer of the metal ion from shorter- to longer-chain phytochelatins. The strength of Hg(II) binding to glutathione and phytochelatins followed the order: gammaGlu-Cys-Gly < (gammaGlu-Cys)2Gly < (gammaGlu-Cys)3Gly < (gammaGlu-Cys)4Gly.
Mostrar más [+] Menos [-]Palabras clave de AGROVOC
Información bibliográfica
Este registro bibliográfico ha sido proporcionado por National Agricultural Library