Design and performance evaluation of a photocatalytic reactor for indoor air disinfection
2021
Zacarías, Silvia Mercedes | Manassero, Agustina | Pirola, Silvana | Alfano, Orlando Mario | Satuf, María Lucila
Since COVID-19 pandemic, indoor air quality control has become a priority, and the development of air purification devices effective for disinfecting airborne viruses and bacteria is of outmost relevance. In this work, a photocatalytic device for the removal of airborne microorganisms is presented. It is an annular reactor filled with TiO₂-coated glass rings and irradiated internally and externally by UV-A lamps. B. subtilis spores and vegetative cells have been employed as model biological pollutants. Three types of assays with aerosolized bacterial suspensions were performed to evaluate distinct purification processes: filtration, photocatalytic inactivation in the air phase, and photocatalytic inactivation over the TiO₂-coated rings. The radiation distribution inside the reactor was analysed by performing Monte Carlo simulations of photon absorption in the photocatalytic bed. Complete removal of a high load of microorganisms in the air stream could be achieved in 1 h. Nevertheless, inactivation of retained bacteria in the reactor bed required longer irradiation periods: after 8 h under internal and external irradiation, the initial concentration of retained spores and vegetative cells was reduced by 68% and 99%, respectively. Efficiency parameters were also calculated to evaluate the influence of the irradiation conditions on the photocatalytic inactivation of bacteria attached at the coated rings.
Mostrar más [+] Menos [-]Palabras clave de AGROVOC
Información bibliográfica
Este registro bibliográfico ha sido proporcionado por National Agricultural Library