Degradation Kinetics of Perchlorate in Sediments and Soils
2004
Tan, Kui | Anderson, Todd A. | Jackson, W Andrew
This study investigated the intrinsic perchlorate (ClO₄ ⁻)degradation kinetics of sediments and soils from multiple sites in microcosm studies, including the influence of varying nitrate concentration (NO₃ ⁻-N from 1 to 22.8 ppm) and up to 300 ppm sulfate. The first-order degradation rates and lag times of both ClO₄ ⁻ and NO₃ ⁻ degradation were site-specific and dependent on environmental conditions such as organic substrate availability, nitrate, initial ClO₄ ⁻ concentration, and prior ClO₄ ⁻ exposure. At an initial ClO₄ ⁻ concentration of 5 ppm, ClO₄ ⁻ degradation rates ranged from 0.13 to 0.46 day⁻¹, and lag times of ClO₄ ⁻ degradation ranged from 0 to 60.0 days; while NO₃ ⁻ degradation occurred at rates ranging from 0.03 to 1.42 day⁻¹, with lag times ranging from 0 to 29.7 days. Under the same treatment conditions, NO₃ ⁻ degradation rates were relatively higher than that of ClO₄ ⁻. Perchlorate degradation rates remained constant at both lower (0.5 ppm) and higher (5 ppm) ClO₄ ⁻ concentrations. Generally, ClO₄ ⁻ rates were affected by the availability of organic substrate, which was represented here by Total Volatile Solids (TVS) of sediments and soils, and not by NO₃ ⁻. Nitrate did increase the lag time of ClO₄ ⁻ degradation, which may account for the persistence of ClO₄ ⁻ in the environment, especially when ClO₄ ⁻ is typically ppb levels in the environment compared to ppm levels of NO₃ ⁻. This study showed rapid intrinsic ClO₄ ⁻ degradation in sediments and soils of contaminated sites, and highlighted the potential for natural attenuation of ClO₄ ⁻ in the environment.
Mostrar más [+] Menos [-]Palabras clave de AGROVOC
Información bibliográfica
Este registro bibliográfico ha sido proporcionado por National Agricultural Library