Physarum polycephalum macroplasmodium exhibits countermeasures against TiO2 nanoparticle toxicity: A physiological, biochemical, transcriptional, and metabolic perspective
2021
Zhang, Zhi | Liang, Zhi Cheng | Liang, Xiu Yi | Zhang, Qing Hai | Wang, Ya Jie | Zhang, Jian Hua | De Liu, Shi
Concerns about the environmental and human health implications of TiO₂ nanoparticles (nTiO₂) are growing with their increased use in consumer and industrial products. Investigations of the underlying molecular mechanisms of nTiO₂ tolerance in organisms will assist in countering nTiO₂ toxicity. In this study, the countermeasures exhibited by the slime mold Physarum polycephalum macroplasmodium against nTiO₂ toxicity were investigated from a physiological, transcriptional, and metabolic perspective. The results suggested that the countermeasures against nTiO₂ exposure include gene-associated metabolic rearrangements in cellular pathways involved in amino acid, carbohydrate, and nucleic acid metabolism. Gene-associated nonmetabolic rearrangements involve processes such as DNA repair, DNA replication, and the cell cycle, and occur mainly when macroplasmodia are exposed to inhibitory doses of nTiO₂. Interestingly, the growth of macroplasmodia and mammal cells was significantly restored by supplementation with a combination of responsive metabolites identified by metabolome analysis. Taken together, we report a novel model organism for the study of nTiO₂ tolerance and provide insights into countermeasures taken by macroplasmodia in response to nTiO₂ toxicity. Furthermore, we also present an approach to mitigate the effects of nTiO₂ toxicity in cells by metabolic intervention.
Mostrar más [+] Menos [-]Palabras clave de AGROVOC
Información bibliográfica
Este registro bibliográfico ha sido proporcionado por National Agricultural Library