Mercury Capture on Fly Ash and Sorbents: The Effects of Coal Properties and Combustion Conditions
2008
Hutson, Nick D
The US fleet of coal-fired power plants, with generating capacity of just over 300 GW, is known to be a major source of domestic mercury (Hg) emissions. To address this, in March 2005, the Environmental Protection Agency (EPA) promulgated the Clean Air Mercury Rule (CAMR) to reduce emissions of mercury from these plants. It is generally believed that most of the initial (Phase I) mercury reductions will come as a co-benefit of existing controls used to remove particulate matter (PM), SO₂, and NO X . Deeper reductions in emissions (as required in Phase II of CAMR) may require the installation of mercury-specific control technology. Duct injection of activated carbon sorbents is the mercury-specific control technology that has been most widely studied and has been demonstrated over a wide range of coal types and combustion conditions. The effectiveness of the mercury control options (both “co-benefit control” and “mercury-specific control”) is significantly impacted by site-specific characteristics such as the combustion conditions, the configuration of existing air pollution controls, and the type of coal burned. This paper identifies the role of coal properties and combustion conditions in the capture of mercury by fly ash and injected sorbents.
Mostrar más [+] Menos [-]Palabras clave de AGROVOC
Información bibliográfica
Este registro bibliográfico ha sido proporcionado por National Agricultural Library