A novel lightweight bilateral segmentation network for detecting oil spills on the sea surface
2022
Chen, Yuqing | Sun, Yuhan | Yu, Wei | Liu, Yaowen | Hu, Huosheng
Accidental oil spills from pipelines or tankers have posed a big threat to marine life and natural resources. This paper presents a novel lightweight bilateral segmentation network for detecting oil spills on the sea surface. A novel deep-learning semantic-segmentation algorithm is firstly created for analyzing the characteristics of oil spill images. A Bilateral Segmentation Network (BiSeNetV2) is then selected as the basic network architecture and evaluated by using experimental comparison of the current mainstream networks on detection accuracy and real-time performances for oil samples. Furthermore, the Gather-and-Expansion (GE) layer of the semantic branch in the traditional network is redesigned and the parameter complexity is reduced. A dual attention mechanism is deployed in the two branches of the BiSeNetV2 to solve the problem of inter-class similarity. Finally, experimental results are given to show the good detection accuracy of the proposed network.
Mostrar más [+] Menos [-]Palabras clave de AGROVOC
Información bibliográfica
Este registro bibliográfico ha sido proporcionado por National Agricultural Library