Importance of the structure and micropores of sedimentary organic matter in the sorption of phenanthrene and nonylphenol
2020
Xu, Decheng | Hu, Shujie | Xiong, Yongqiang | Yang, Yu | Ran, Yong
The demineralized fraction (DM), lipid-free fraction (LF), nonhydrolyzable organic carbon fraction (NHC), and black carbon (BC) were isolated from five marine surface sediments, and they were characterized by elemental analysis as well as CO₂ and N₂ adsorption techniques, respectively. The NHC fractions were characterized using advanced solid-state ¹³C nuclear magnetic resonance (NMR) and x-ray photoelectron spectroscopy (XPS). Then, the sorption isotherms of phenanthrene (Phen) and nonylphenol (NP) on all of the samples were investigated by a batch technique. The CO₂ micropore volumes were corrected for the outer specific surface areas (SSAs) by using the N₂-SSA. Significant correlations between the micropore-filling volumes of Phen and NP and the micropore volumes suggested that the micropore-filling mechanism dominated the Phen and NP sorption. Meanwhile, the (O + N)/C atomic ratios were negatively and significantly correlated with the sorption capacities of Phen and NP, indicating that the sedimentary organic matter (SOM) polarity also played a significant role in the sorption process. In addition, a strong linear correlation was demonstrated between the aromatic C and the sorption capacity of Phen for the NHC fractions. This study demonstrates the importance of the micropores, polarity, and aromaticity on the sorption processes of Phen and NP in the sediments.
Mostrar más [+] Menos [-]Palabras clave de AGROVOC
Información bibliográfica
Este registro bibliográfico ha sido proporcionado por National Agricultural Library