Biosorption of Toxic Metals by Water Lettuce (Pistia stratiotes) Biomass
2017
Rodrigues, Ana Carolina Dornelas | Amaral Sobrinho, Nelson Moura Brasil do | Santos, Fabiana Soares dos | dos Santos, André Marques | Pereira, Ana Carolina Callegario | Lima, Erica Souto Abreu
Adsorption isotherms were constructed to evaluate the potential use of water lettuce (Pistia stratiotes) dry biomass for the biosorption of zinc and cadmium. One gram of dry biomass of this plant was treated with five increasing doses of zinc (1.8, 18, 50, 79, and 105 mg L⁻¹) and four doses of cadmium (0.01, 0.1, 1, and 10 mg L⁻¹), for nine collection times (1, 3, 6, 12, 24, 36, 48, 60, and 72 h). The levels of these metals were determined by atomic absorption spectrophotometry. To evaluate changes in the surface morphology of the dry biomass, scanning electron microscopy (SEM) images were taken of the samples subjected to the greatest contamination, and these were compared with the images of the samples without zinc and cadmium (control). The ISOFIT software was used to select the isotherm model that best fit the biosorption of metals by water lettuce dry biomass. The linear model was determined to be the best-fitting isotherm model, because it had the lowest corrected Akaike information criterion (AICc) value and a Akaike weight (AICw) value closest to one, which indicates the high affinity of the biosorbent for the adsorbates evaluated. The results for both metals demonstrated greater than 70% reductions in the concentrations of the metals in the contaminated solutions. The SEM images indicated changes in the morphology of the contaminated biomass, thus demonstrating the biosorption mechanisms and confirming the potential of the dry biomass of this plant for use in the remediation of solutions contaminated with zinc and cadmium.
Mostrar más [+] Menos [-]Palabras clave de AGROVOC
Información bibliográfica
Este registro bibliográfico ha sido proporcionado por National Agricultural Library