Soil-water dynamics and tree water uptake in the Sacramento Mountains of New Mexico (USA): a stable isotope study | Interaction sol-eau et prélèvement d’eau par les arbres dans les montagnes de Sacramento dans le Nouveau Mexique (Etats-Unis d’Amérique): une étude des isotopes stables La dinámica del agua del suelo y la captación de agua de árboles en las montañas de Sacramento en Nuevo México (EEUU): un estudio de isótopos estables (美国)新墨西哥州萨克拉门托山脉土壤水动力学和树的水摄取 Dinâmicas solo-água e absorção de água por árvore nas Montanhas de Sacramento no Novo México (EUA): um estudo de isótopos estáveis
2016
Gierke, Casey | Newton, B Talon | Phillips, Fred M.
In the southwestern United States, precipitation in the high mountains is a primary source of groundwater recharge. Precipitation patterns, soil properties and vegetation largely control the rate and timing of groundwater recharge. The interactions between climate, soil and mountain vegetation thus have important implications for the groundwater supply. This study took place in the Sacramento Mountains, which is the recharge area for multiple regional aquifers in southern New Mexico. The stable isotopes of oxygen and hydrogen were used to determine whether infiltration of precipitation is homogeneously distributed in the soil or whether it is partitioned among soil-water ‘compartments’, from which trees extract water for transpiration as a function of the season. The results indicate that “immobile” or “slow” soil water, which is derived primarily from snowmelt, infiltrates soils in a relatively uniform fashion, filling small pores in the shallow soils. “Mobile” or “fast” soil water, which is mostly associated with summer thunderstorms, infiltrates very quickly through macropores and along preferential flow paths, evading evaporative loss. It was found that throughout the entire year, trees principally use immobile water derived from snowmelt mixed to differing degrees with seasonally available mobile-water sources. The replenishment of these different water pools in soils appears to depend on initial soil-water content, the manner in which the water was introduced to the soil (snowmelt versus intense thunderstorms), and the seasonal variability of the precipitation and evapotranspiration. These results have important implications for the effect of climate change on recharge mechanisms in the Sacramento Mountains.
Mostrar más [+] Menos [-]Palabras clave de AGROVOC
Información bibliográfica
Este registro bibliográfico ha sido proporcionado por National Agricultural Library