Embryonic gene expression altered by maternal exposure to air pollution in rats
2020
Li, Zheng | Ma, Jianqing | Lin, Youxi | Shen, Jianxiong | Wu, Zhanyong | Chan, Matthew T. V. | Wu, William K. K.
Exposure to air pollution is known to increase the risks for cardiovascular, pulmonary and metabolic diseases. Growing evidences also indicated that air pollution exposure during pregnancy could negatively impact on early embryonic development and children’s health. We performed RNA sequencing to identify deregulated mRNAs in air pollution-exposed rat embryos. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were used to analyse the potential cellular functions of deregulated mRNAs. Our analysis indicated that a total of 1678 mRNAs were differentially expressed on gestation day 9 upon in utero exposure to fine particulate matter of > 200 μg/m³, among which 1098 mRNAs were downregulated and 580 mRNAs were upregulated. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses revealed gap junction, cell adhesion, axon guidance and the neurotrophin signalling pathway as key biological processes perturbed by air pollution exposure. Furthermore, reconstruction of the mRNA regulatory network highlighted the central roles of Tbx4, Bmp4, Sox10, Wnt9b, Bmp7 and Foxc2. These data suggested that embryonic mRNA deregulation may underlie the formation of air pollution-associated congenital defects.
Mostrar más [+] Menos [-]Palabras clave de AGROVOC
Información bibliográfica
Este registro bibliográfico ha sido proporcionado por National Agricultural Library