Assessing Phytoremediation Potential of Aloe barbadensis, Chrysopogon zizanioides and Ocimum tenuiflorum for Sustainable Removal of Heavy Metals from Contaminated Soil
2024
S. P. Sangeetha, S. Sona, Nabam Tapung, Abhishek Kumar and Suraj Kumar
India’s fast industrialization and population expansion have resulted in heavy metal accumulation from many operations, which has caused massive waste generation and poisoning of soils. Therefore, it is necessary to design reclamation to improve th T.Ne soil. Phytoremediation presents itself as a viable, economical, and environmentally sustainable solution to this problem. This study was carried out by using plants namely, aloe-vera (Aloe-Barbadensis), tulsi (Ocimum Tenuiflorium), and vetiver (Chrysopogon Zizanoides) plants which were planted in a simulated soil of Cd, Zn and Pb, for 4 weeks. The sample of plant and soil were taken in 9 different pots, (15 cm diameter and 25 cm height) among 9 potted soils one will be tested as a controlled sample. An aqueous solution of lead, cadmium and zinc were added separately to the dry soil samples. The moisture level of the soil was maintained to near field water capacity (35.6%) and equilibrated for two weeks. The saplings of vetiver grass, aloe vera and tulsi were selected and pruned (the shoots were originally 20 cm high and the roots 8 cm long), and then transplanted into the pots. The AAS test was conducted after 4 weeks of growing in simulated soil. Tulsi demonstrated the highest efficacy in reducing Zn concentrations from 300 mg/kg to 188.3 mg/kg, followed by vetiver (179.3 mg/kg) and Aloe vera (158.3 mg/kg). Similarly, for Pb, tulsi exhibited the most substantial reduction (from 600 mg/kg to 188.3 mg/kg), followed by vetiver (164.3 mg/kg) and Aloe vera (179.6 mg/kg). Regarding Cd, tulsi reduced concentrations from 80 mg/kg to 18.62 mg/kg, while vetiver achieved a 17.62 mg/kg reduction. The result highlights Tulsi’s superior remediation potential, attributed to its efficient heavy metal uptake and translocation mechanisms. Thus, using these plants in the phytoremediation process, the heavy metals are extracted more economically than other plants. This technique highlights the innate ability of hyper-accumulator plant species, which flourish in situations high in heavy metals, to extract contaminants from contaminated soil.
Mostrar más [+] Menos [-]Palabras clave de AGROVOC
Información bibliográfica
Este registro bibliográfico ha sido proporcionado por Directory of Open Access Journals