Numerical Modeling of Instantaneous Spills in One-dimensional River Systems
2024
Fatima M. A. Al-khafaji and Hussein A. M. Al-Zubaidi
Modeling the fate and transport of spills in rivers is critical for risk assessment and instantaneous spill response. In this research, a one-dimensional model for instantaneous spills in river systems was built by solving the advection-dispersion equation (ADE) numerically along with the shallow water equations (SWEs) within the MATLAB environment. To run the model, the Ohio River’s well-known accidental spill in 1988 was used as a field case study. The verification process revealed the model’s robustness with very low statistic errors. The mean absolute error (MAE) and root mean squared error (RMSE) relative to the absorbed record were 0.0626 ppm and 0.2255 ppm, respectively. Results showed the spill mass distribution is a function of the longitudinal dispersion coefficient and the mass decay rate. Increasing the longitudinal dispersion coefficient reduces the spill impact widely, for instance after four days from the mass spill the maximum concentration decreased from 0.846789 to 0.486623 ppm, and after five days it decreased from 0.332485 to 0.186094 ppm by increasing the coefficient from 15 to 175 m2/sec. A similar reduction was achieved by increasing the decay rate from 0.8 to 1.2 day-1 (from 0.846789 to 0.254274 ppm and from 0.332485 to 0.0662202 ppm after four and five days, respectively). Thus, field measurements of these two factors must be taken into account to know the spill fate in river systems.
Mostrar más [+] Menos [-]Información bibliográfica
Este registro bibliográfico ha sido proporcionado por Directory of Open Access Journals