LCDDN-YOLO: Lightweight Cotton Disease Detection in Natural Environment, Based on Improved YOLOv8
2025
Haoran Feng | Xiqu Chen | Zhaoyan Duan
To address the challenges of detecting cotton pests and diseases in natural environments, as well as the similarities in the features exhibited by cotton pests and diseases, a Lightweight Cotton Disease Detection in Natural Environment (LCDDN-YOLO) algorithm is proposed. The LCDDN-YOLO algorithm is based on YOLOv8n, and replaces part of the convolutional layers in the backbone network with Distributed Shift Convolution (DSConv). The BiFPN network is incorporated into the original architecture, adding learnable weights to evaluate the significance of various input features, thereby enhancing detection accuracy. Furthermore, it integrates Partial Convolution (PConv) and Distributed Shift Convolution (DSConv) into the C2f module, called PDS-C2f. Additionally, the CBAM attention mechanism is incorporated into the neck network to improve model performance. A Focal-EIoU loss function is also integrated to optimize the model’s training process. Experimental results show that compared to YOLOv8, the LCDDN-YOLO model reduces the number of parameters by 12.9% and the floating-point operations (FLOPs) by 9.9%, while precision, mAP@50, and recall improve by 4.6%, 6.5%, and 7.8%, respectively, reaching 89.5%, 85.4%, and 80.2%. In summary, the LCDDN-YOLO model offers excellent detection accuracy and speed, making it effective for pest and disease control in cotton fields, particularly in lightweight computing scenarios.
Mostrar más [+] Menos [-]Información bibliográfica
Este registro bibliográfico ha sido proporcionado por Directory of Open Access Journals