Refinar búsqueda
Resultados 1-2 de 2
Effects of light quality on physiological and biochemical attributes of 'Queen Nina' grape berries Texto completo
2025
Yiran Ren | Xinglong Ji | Jingwei Wu | Guo Wei | Xin Sun | Min Wang | Wen Liu | Zhenhua Cui | Xiaozhao Xu | Yanhua Li | Qian Mu | Li Li | Bo Li | Jinggui Fang | Xiangpeng Leng
Protected cultivation is an effective measure for high-end grape production. Nevertheless, the long-time application of plastic film negatively influences the light environment, and results in a certain decrease in berry quality. In this study, six different light treatments, including white (W), red (R), blue (B), and three different combinations with different ratios of red and blue light (1:1, 4:1, 1:4, respectively), were applied to monitor the quality and sensory properties of 'Queen Nina' grapes. Compared to the control group (without supplemental light), all light treatments significantly increased the size and weight of berries, as well as improved their sugar, anthocyanins, flavonoids, and volatile organic compounds (VOCs) content, whereas all light treatments decreased the levels of chlorophylls and organic acids. Furthermore, the R1B4 treatment improved the content of cyanidin-3-O-glucoside (Cy) and peonidin-3-O-glucoside (Pn), which are the dominant anthocyanin compounds in red grape berry. Additionally, esters, accounting for more than 42% of the VOCs, are the main volatile compounds in 'Queen Nina' grape, and R1B4 treatment was the most favorable treatment for VOCs accumulation. The combination of red and blue light at the 1:4 ratio (R1B4) obtained the highest composite and sensory scores and had the most positive impact on berry coloration, sugars, anthocyanins, flavonoids, and VOCs accumulation, followed by the blue light treatment. In summary, the present results highlight the effective strategy of R1B4 light treatment to increase the berry quality of 'Queen Nina' grape berries.
Mostrar más [+] Menos [-]Effects of light quality on physiological and biochemical attributes of 'Queen Nina' grape berries Texto completo
2025
Yiran Ren | Xinglong Ji | Jingwei Wu | Guo Wei | Xin Sun | Min Wang | Wen Liu | Zhenhua Cui | Xiaozhao Xu | Yanhua Li | Qian Mu | Li Li | Bo Li | Jinggui Fang | Xiangpeng Leng
Protected cultivation is an effective measure for high-end grape production. Nevertheless, the long-time application of plastic film negatively influences the light environment, and results in a certain decrease in berry quality. In this study, six different light treatments, including white (W), red (R), blue (B), and three different combinations with different ratios of red and blue light (1:1, 4:1, 1:4, respectively), were applied to monitor the quality and sensory properties of 'Queen Nina' grapes. Compared to the control group (without supplemental light), all light treatments significantly increased the size and weight of berries, as well as improved their sugar, anthocyanins, flavonoids, and volatile organic compounds (VOCs) content, whereas all light treatments decreased the levels of chlorophylls and organic acids. Furthermore, the R1B4 treatment improved the content of cyanidin-3-O-glucoside (Cy) and peonidin-3-O-glucoside (Pn), which are the dominant anthocyanin compounds in red grape berry. Additionally, esters, accounting for more than 42% of the VOCs, are the main volatile compounds in 'Queen Nina' grape, and R1B4 treatment was the most favorable treatment for VOCs accumulation. The combination of red and blue light at the 1:4 ratio (R1B4) obtained the highest composite and sensory scores and had the most positive impact on berry coloration, sugars, anthocyanins, flavonoids, and VOCs accumulation, followed by the blue light treatment. In summary, the present results highlight the effective strategy of R1B4 light treatment to increase the berry quality of 'Queen Nina' grape berries.
Mostrar más [+] Menos [-]