Refinar búsqueda
Resultados 1-10 de 54
Evaluation of analgesia and cardiorespiratory effects of epidurally administered butorphanol in isoflurane-anesthetized dogs.
1996
Troncy E. | Cuvellliez S.G. | Blais D.
Comparison of antinociceptive, cardiovascular, and respiratory effects, head ptosis, and position of pelvic limbs in mares after caudal epidural administration of xylazine and detomidine hydrochloride solution.
1996
Skarda R.T. | Muir W.W. III.
Evaluation of the effect of alfentanil on the minimum alveolar concentration of halothane in horses.
1993
Pascoe P.J. | Steffey E.P. | Black W.D. | Claxton J.M. | Jacobs J.R. | Woliner M.J.
The effect of 3 plasma concentrations of alfentanil on the minimum alveolar concentration (MAC) of halothane in horses was evaluated. Five healthy geldings were anesthetized on 3 occasions, using halothane in oxygen administered through a mask. After induction of anesthesia, horses were instrumented for measurement of blood pressure, airway pressure, and end-tidal halothane concentrations. Blood samples, for measurement of pH and blood gas tensions, were taken from the facial artery. Positive pressure ventilation was begun, maintaining PaCO2 at 49.1 +/- 3.3 mm of Hg and airway pressure at 20 +/- 2 cm of H2O. The MAC was determined in triplicate, using a supramaximal electrical stimulus of the oral mucous membranes. Alfentanil infusion was then begun, using a computer-driven infusion pump to achieve and maintain 1 of 3 plasma concentrations of alfentanil. Starting at 30 minutes after the beginning of the infusion, MAC was redetermined in duplicate. Mean +/- SD measured plasma alfentanil concentration during the infusions were 94.8 +/- 29.0, 170.7 +/- 29.2 and 390.9 +/- 107.4 ng/ml. Significant changes in MAC were not observed for any concentration of alfentanil. Blood pressure was increased by infusion of alfentanil and was dose-related, but heart rate did not change. Pharmacokinetic variables of alfentanil were determined after its infusion and were not significantly different among the 3 doses.
Mostrar más [+] Menos [-]Neuromuscular blockade by use of atracurium in anesthetized llamas.
1993
Hildebrand S.V. | Hill T. III
Anesthesia was induced in 8 healthy llamas by administration of guaifenesin and ketamine, and was maintained with halothane in oxygen. On 2 separate experimental days, atracurium was given to induce 95 to 99% reduction of evoked hind limb digital extensor tension (twitch). For the first part of the study, atracurium was given iv as repeat boluses, with muscle twitch strength being allowed to return without intervention to 75% of baseline after each bolus before the subsequent bolus was given. A total of 5 bolus doses of atracurium was given. For the first bolus, 0.15 mg/kg of body weight iv, and for subsequent boluses, 0.08 mg/kg, induced desired relaxation. Onset of relaxation was slightly more rapid for repeat, compared with initial, bolus. Duration of relaxation and recovery time were similar to initial and repeat doses. Maximal twitch reduction was observed in 4 +/- 0.2 minutes (mean +/- SEM). Duration from maximal twitch reduction to 10% recovery was 6.3 +/- 0.4 minutes. Twitch recovery from 10 to 50% of baseline took 11.6 +/- 0.6 minutes. Twitch recovery from 10 to 75% recovery took 19.5 +/- 1.1 minutes. Recovery from 10% twitch to 50% fade took 12.8 +/- 0.5 minutes. Fade at 50% recovery of twitch was 39 +/- 0.02%. Significant (P < 0.05) animal-to-animal variation was observed in twitch recovery times. For the second part of the study, atracurium was initially given IV as a 0.15-mg/kg bolus, followed by infusion for 1 to 2 hours. Infusion rate required some early adjustment to maintain desired relaxation, but the rate that prevailed was 1.07 +/- 0.07 ml/kg/h (0.4 mg of atracurium/ml of saline solution). Recovery of muscle twitch was similar to that previously mentioned for repeat bolus administration, At the end of the study, edrophonium (0.5 mg/kg) with atropine (0.01 mg/kg, IV) was effective in antagonizing residual neuromuscular blockade by atracurium. All llamas recovered without injury from anesthesia, although 1 llama had a rough recovery. It was concluded that atracurium can provide neuromuscular blockade by either repeat bolus administration or continuous infusion in llamas.
Mostrar más [+] Menos [-]Circulatory and respiratory responses of spontaneously breathing, laterally recumbent horses to 12 hours of halothane anesthesia.
1993
Steffey E.P. | Dunlop C.I. | Cullen L.K. | Hodgson D.S. | Giri S.N. | Willits N. | Woliner M.J. | Jarvis K.A. | Smith C.M. | Elliott A.R.
Cardiovascular and at accompany markedly long periods (12 hours) of halothane anesthesia were characterized. Eight spontaneously breathing horses were studied while they were positioned in left lateral recumbency and anesthetized only with halothane in oxygen maintained at a constant end-tidal concentration of 1.06% (equivalent to 1.2 times the minimal alveolar concentration for horses). Results of circulatory and respiratory measurements during the first 5 hours of constant conditions were similar to those previously reported from this laboratory (ie, a time-related significant increase in systemic arterial blood pressure, cardiac output, stroke volume, left ventricular work, PCV, plasma total solids concentration, and little change in respiratory system function). Beyond 5 hours of anesthesia, arterial blood pressure did not further increase, but remained above baseline. Cardiac output continued to increase, because heart rate significantly (P < 0.05) increased. Peak inspiratory gas flow increased significantly (P < 0.05) in later stages of anesthesia. There was a significant decrease in inspiratory time beginning at 4 hours. Although PaO2, and PaCO2, did not significantly change during the 12 hours of study, PVO2 increased significantly P < 0.05) and progressively with time, beginning 6 hours after the beginning of constant conditions. Metabolic acidosis increased with time significantly [P < 0.05] starting at 9 hours), despite supplemental IV administered NaHCO3. Plasma concentrations of eicosanoids: 6-ketoprostaglandin F1 alpha (PGF1 alpha, a stable metabolite of PGI2), PGF2 alpha, PGE, and thromboxane (TxB2, a stable metabolite of TxA2) were measured in 5 of the 8 horses before and during anesthesia. Significant changes from preanesthetic values were not Significant changes from preanesthetic values were not detected. Dynamic thoracic wall and lung compliances decreased with time.
Mostrar más [+] Menos [-]Analgesia and behavioral responses of dogs given oxymorphone-acepromazine and meperidine-acepromazine after methoxyflurane and halothane anesthesia.
1992
Sawyer D.C. | Rech R.H. | Adams T. | Durham R.A. | Richter M.A. | Striler E.L.
This study was designed to test analgesia, duration, and cardiovascular changes induced by meperidine (MEP) and oxymorphone (OXY) following methoxyflurane (MOF) and halothane (HAL) anesthesia. Eight healthy dogs were given atropine and acepromazine, and anesthesia was induced with thiamylal and maintained with 1.5 minimal alveolar concentration of MOF or HAL for 1 hour during controlled ventilation. Eight treatments were given with each anesthetic: 3 with MEP (0.5, 1.0, and 2.0 mg/kg, IV), 3 with oxymorphone (OXY; 0.05, 0.1, and 0.2 mg/kg, IV), and 2 placebos with sterile water. Test drugs were given at the end of anesthesia when early signs of recovery were evident. Minimal threshold stimulus/response nociception was assessed by use of an inflatable soft plastic colonic balloon. Blood pressures and pulse rate were measured with a noninvasive monitor. Meperidine and OXY were found to be effective analgesics and could be reversed with naloxone. Intravenous administration of 2.0 mg of MEP/kg provided analgesia for 36 +/- 6 minutes and 39 +/- 15 minutes after MOF and HAL, respectively. In contrast, OXY was effective at all 3 doses with effects of IV administration of 0.2 mg of OXY/kg lasting 154 +/- 13 minutes and 152 +/- 12 minutes, after MOF and HAL, respectively. Analgesia could not be demonstrated after anesthesia for acepromazine, MOF, or HAL. Blood pressure was not changed by either anesthetic nor was it influenced by MEP or OXY. Pulse rate was significantly depressed by the higher doses of OXY following HAL, but was not changed by MEP following either anesthetic. This study demonstrated the longer duration of analgesia of OXY. In addition, we could not find that analgesia was provided by either MOF or HAL following recovery from anesthesia.
Mostrar más [+] Menos [-]Effect of halothane, isoflurane, and pentobarbital anesthesia on myocardial irritability in chickens.
1990
Greenlees K.J. | Clutton R.E. | Larsen C.T. | Eyre P.
The relative myocardial irritant properties of halothane, isoflurane, and pentobarbital were evaluated in chickens. Sixteen adult male broiler chickens were randomly assigned to 1 of 3 groups: group-1 chickens were anesthetized with pentobarbital (30 mg/kg, IV), group-2 chickens were anesthetized with halothane (end tidal halothane 1.2%), and group-3 chickens were anesthetized with isoflurane (end tidal isoflurane 2.1%). Birds in any 2 of the 3 treatment groups were tested on any 1 day. Local anesthesia was induced, and blood pressure, heart rate, ECG, and blood gas variables were measured before general anesthesia was induced. Positive-pressure ventilation with an inspired O2 fraction > 0.95 was adjusted to result in an end tidal CO2 concentration that reflected a PaCO2 similar to that obtained prior to anesthesia and ventilation. All measurements were repeated. The threshold for ventricular fibrillation in response to electrical stimulation of the heart was then determined for all birds. Effects of anesthesia on hemodynamic and blood gas variables were similar in all 3 groups. Compared with halothane or pentobarbital, isoflurane anesthesia resulted in a significantly (P < 0.05) lower threshold for electrical fibrillation of the heart.
Mostrar más [+] Menos [-]Echocardiographic reference values in healthy cats sedated with ketamine hydrochloride.
1985
Fox P.R. | Bond B.R. | Peterson M.E.
Arterial to end-tidal CO2 tension and alveolar dead space in halothane- or isoflurane-anesthetized ponies.
1985
Meyer R.E. | Short C.E.
Effects of abdominal insufflation with nitrous oxide on cardiorespiratory measurements in spontaneously breathing isoflurane-anesthetized dogs.
1993
Gross M.E. | Jones B.D. | Bergstresser D.R. | Rosenhauer R.R.
Cardiorespiratory effects of abdominal insufflation were evaluated in 8 dogs during isoflurane anesthesia. Each dog was studied 3 times, in 1 of the following orders of insufflation pressures: 10-20-30, 20-30-10, 30-20-10, 10-30-20, 20-10-30, and 30-10-20 mm of Hg. Anesthesia was induced by use of a mask, dogs were intubated, and anesthesia was maintained by isoflurane in 100% oxygen. After instrumentation, baseline values were recorded (time 0), and the abdomen was insufflated with nitrous oxide. Data were recorded at 5, 10, 15, 20, 25, and 30 minutes after insufflation. The abdomen was then desufflated, with recording of data continuing at 35 and 40 minutes. Mean arterial pressure increased at 5 minutes during 20 mm of Hg insufflation pressure, and from 20 to 30 minutes during 30 mm of Hg pressure. Tidal volume decreased from 5 to 30 minutes during 10 and 20 mm of Hg pressures, and from 5 to 40 minutes during 30 mm of Hg pressure. Minute ventilation decreased at 10 and 20 minutes during 20 mm of Hg pressure. End-tidal CO2 concentration increased from 5 to 30 minutes during 20 and 30 mm of Hg pressure. The PaCO2 decreased at 40 minutes during 10 mm of Hg pressure, at 30 minutes during 20 mm of Hg pressure, and from 10 to 40 minutes during 30 mm of Hg pressure. Values for pH decreased from 10 to 30 minutes during 20 and 30 mm of Hg pressures. The PaO2 decreased from 20 to 40 minutes during 10 mm of Hg pressure, at 30 minutes during 20 mm of Hg pressure, and from 10 to 40 minutes during 30 mm of Hg pressure. Percentage decrease in tidal volume was greater at 5 and 15 minutes with 30 mm of Hg pressure. Differences in percentage increase in end tidal CO2 concentration were observed among the 3 pressures from 5 to 30 minutes. Although significant, these changes do not preclude use of laparoscopy if insufflation pressure > 20 mm of Hg is avoided.
Mostrar más [+] Menos [-]