Refinar búsqueda
Resultados 1-10 de 23
Observations on transplacental infection with bluetongue virus in sheep.
1985
Richardson C. | Taylor W.P. | Terlecki S. | Gibbs E.P.J.
Humoral immune response of calves to bluetongue virus infection.
1987
MacLachlan N.J. | Heidner H.W. | Fuller F.J.
Detection of viral antigens in bluetongue virus-infected ovine tissues, using the peroxidase-antiperoxidase technique.
1985
Cherrington J.M. | Ghalib H.W. | Sawyer M.M. | Osburn B.I.
Implications of a conserved region of bluetongue virus protein VP2 in cross-neutralisation of bluetongue virus serotypes
2020
Jyothi, Shiva J.(P.V. Narsimha Rao Telangana Veterinary University College of Veterinary Science Department of Veterinary Biotechnology) | Patil, Sunil R.(P.V. Narsimha Rao Telangana Veterinary University College of Veterinary Science Department of Veterinary Biotechnology) | Reddy, Narasimha Y.(P.V. Narsimha Rao Telangana Veterinary University College of Veterinary Science Department of Veterinary Biotechnology) | Panduranga, Rao P.(Biovet Pvt Ltd.) | Madala, Uma(Ella Foundation) | Prakash, Gnana M.(P.V. Narsimha Rao Telangana Veterinary University College of Veterinary Science Department of Animal Genetics and Breeding) | Putty, Kalyani(P.V. Narsimha Rao Telangana Veterinary University College of Veterinary Science Department of Veterinary Biotechnology)
Bluetongue (BT) is a vector-borne disease of ruminants caused by Bluetongue virus (BTV). Twenty-nine different serotypes of BTV are currently reported throughout the world. The main objective of this study is the development of a subunit vaccine model that could potentially be adapted to provide broad spectrum protection against multiple BTV serotypes, which the conventional vaccines fail to address. To this end, three different BTV proteins (conserved region of viral protein [VP]2, VP5 and NS1) were expressed and purified in an Escherichia coli expression system. The immunogenicity of these proteins was tested in murine models using the MontanideTM ISA 201 VG adjuvant. BALB/c mice were immunised thrice (with individual proteins and a mixture of three proteins) at two-week intervals and were monitored until Day 40 post-infection/vaccination. Protein-specific antibodies directed against the recombinant proteins were detected by indirect enzyme-linked immunosorbent assay. Neutralising antibody (Nab) titres and cross-neutralisation against a range of BTV serotypes (BTV-1, -2, -4, -5, -9, -10, -12, -16, -21, -23 and -24) were determined by serum neutralisation test. The recombinant proteins elicited higher Nab titres compared with the inactivated vaccine group, except for BTV-1, where the inactivated vaccine group elicited higher Nab titres. Additive effect of the three proteins was not observed as the Nab titres generated with a combination of conserved VP2, VP5 and NS1 was similar to those of the individual protein groups. Whilst BTV-12 could only be neutralised by serum raised against the inactivated vaccine group, BTV-5 and -24 could not be neutralised by any of the groups tested. Our cumulative data suggest that the conserved regions of VP2 (cVP2), VP5 and NS1 could play an important part in the novel vaccine design against multiple BTV serotypes. Importantly, given that VP2 was already known to elicit a serotype-specific immune response against BT, we report, for the first time, that the conserved region of VP2 has the ability to induce cross-protective immune response.
Mostrar más [+] Menos [-]Colorimetric diagnosis of prolonged bluetongue viremia in sheep, using an enzyme-linked oligonucleotide sorbent assay of amplified viral nucleic acids
1993
Katz, J.B. | Gustafson, G.A. | Alstad, A.D. | Adler, K.A. | Moser, K.M.
Each of 5 US-origin serotypes of bluetongue virus (BTV) was inoculated into a separate pair of sheep. The duration of each animal's ensuing viremia was monitored, using a BTV serogroup-specific nested polymerase chain reaction (PCR) method and an embryonating chicken egg (ECE) inoculation procedure. Mean duration of viremia was 100 and 38 days for the PCR and ECE methods, respectively. This difference was significant (P < 0.001) and documents a more prolonged viremia in virus-exposed sheep than has been reported. A dual internal oligonucleotide solution hybridization procedure was developed for the rapid (2 hours) colorimetric detection and identification of BTV-specific PCR products. This enzyme-linked oligonucleotide sorbent assay (ELOSA) relied on annealing of separate biotinylated and fluoresceinated probes to the amplified BTV nucleic acid; these complexes were captured on streptavidin-coated microtitration wells and were detected, using a horseradish peroxidase-labeled antifluorescein antibody conjugate. End-point dilution analyses of PCR products indicated that the ELOSA was more sensitive than gel electrophoretic or comparable colorimetric slot-blot hybridization techniques. The BTV PCR-ELOSA system represents a more sensitive and expeditious means of diagnosing BTV-induced viremia than does the ECE procedure currently used. The combination of ELOSA with PCR should facilitate practical application of nucleic acid technology to diagnostic veterinary medicine.
Mostrar más [+] Menos [-]Risk factors associated with herd-level exposure of cattle in Nebraska, North Dakota, and South Dakota to bluetongue virus
2005
Green, Al | Dargatz, D.A. | Schmidtmann, E.T. | Herrero, M.V. | Seitzinger, A.H. | Ostlund, E.N. | Wagner, B.A. | Moser, K.M. | Wineland, N.E. | Walton, T.E.
To evaluate herd-level risk factors for seropositive status of cattle to 1 or more bluetongue viruses. 110 herds of cattle in Nebraska, North Dakota, and South Dakota. Blood samples were collected before and after the vector season. Samples were tested for antibodies against bluetongue virus by use of a commercially available competitive ELISA. Factors evaluated included descriptors of geographic location and management practices. Trapping of insect vectors was conducted to evaluate vector status on a subset of 57 operations. A multivariable logistic regression model was constructed to evaluate associations. For the full data set, altitude and latitude were associated with risk of having seropositive cattle (an increase in altitude was associated with an increase in risk, and a more northerly location was associated with a decrease in risk of a premise having seropositive cattle). Import of cattle from selected states was associated with an increase in risk of having seropositive cattle. From the subset of herds with data on vector trapping, altitude and latitude were associated with risk of having seropositive cattle, similar to that for the full model. However, commingling with cattle from other herds was associated with a decrease in risk of seropositivity. Findings reported here may be useful in generating additional hypotheses regarding the ecologic characteristics of bluetongue viruses and other vector-borne diseases of livestock. Sentinel surveillance programs are useful for documenting regionalization zones for diseases, which can be beneficial when securing international markets for animals and animal products.
Mostrar más [+] Menos [-]Bluetongue virus infection in pregnant ewes
1994
Parsonson, I.M. | Luedke, A.J. | Barber, T.L. | Walton, T.E.
Inoculation of 53 ewes after 35, 45, 60, or 80 days of gestation with bluetongue virus serotypes 10, 11, 13, or 17, or with epizootic hemorrhagic disease virus serotypes 1 or 2, resulted in overt clinical disease in the 47 ewes inoculated with bluetongue virus but not in the 6 ewes inoculated with epizootic hemorrhagic disease virus. None of the lambs produced by these ewes had developmental defects or any evidence of persistence of viremia.
Mostrar más [+] Menos [-]Prevalence of bluetongue virus expression in leukocytes from experimentally infected ruminants
1993
Ellis, J.A. | Coen, M.L. | Maclachlan, N.J. | Wilson, W.C. | Williams, E.S. | Leudke, A.J.
Replication of bluetongue virus (BTV) in leukocytes from the blood of sheep, cattle, elk, and mule deer inoculated with BTV serotype 10 or 17 was assessed by immunocytochemical staining and dot blot northern hybridization to determine if differences in the prevalence of infection in this blood fraction might account for the differences in clinical disease among these species. Viremia was confirmed by virus isolation in all inoculated animals. Analysis of leukocytes with monoclonal antibodies specific for BTV proteins revealed low numbers of infected leukocytes in only 2 sheep 8 days after inoculation with BTV serotype 10. Most of the cells expressing BTV were identified morphologically as monocytes; approximately 10% of infected cells were lymphocytes. Bluetongue virus was not detected by use of dot-blot hybridization on samples of blood. Our results suggest that differential infection of leukocytes does not account for the pronounced differences in clinical signs and pathologic changes among ruminants.
Mostrar más [+] Menos [-]Comparison of slot blot nucleic acid hybridization, immunofluorescence, and virus isolation techniques to detect bluetongue virus in blood mononuclear cells from cattle with experimentally induced infection
1992
De la Concha-Bermejillo, A. | Schore, C.E. | Dangler, C.A. | de Mattos, C.C. | de Mattos, C.A. | Osburn, B.I.
A slot blot hybridization technique was applied detection of bluetongue virus (BTV) in blood mononuclear cells (BMNC) obtained from cattle with experimentally induced infection. This technique lacked sensitivity to detect the viral nucleic acid directly in clinical specimens. When aliquots of mononuclear cells from these cattle were cultivated in vitro for 10 days to amplify virus titer, only 33.3% of the samples collected during viremia gave a positive signal in the slot blot hybridization format. By contrast results for 34.3% of noncultured and 63.3% of cultured mononuclear cell samples collected during viremia were positive by immunofluorescence. The average number of infected cells, as detected by immunofluorescence in the noncultured mononuclear cell samples, was 1 to 5/300,000, and was usually > 10/300,000 in the cultured cell samples. Virus was isolated from all postinoculation blood samples obtained from 4 heifers that were seronegative at the time of inoculation, but was not isolated from any of the preinoculation samples, or from any of the postinoculation samples obtained from 2 heifers that were seropositive at the time of inoculation. When virus isolation was attempted from separated mononuclear cells in 2 heifers, 43.7% of the noncultured and 87.5% of the cultured samples had positive results.
Mostrar más [+] Menos [-]Neutralizing antibody responses to bluetongue and epizootic hemorrhagic disease virus serotypes in beef cattle
1989
Fulton, R.W. | Burge, L.J. | Cummins, J.M.
Blood samples were obtained from sentinel beef cattle at monthly intervals, and the sera were tested for antibodies, using a bluetongue virus (BTV) immuodiffusion test (IDT) and virus-neutralization test (VNT), for 5 BTV serotypes (2, 10, 11, 13, and 17) and 2 epizootic hemorrhagic disease virus (EHDV) serotypes (1 and 2). The cattle tested were transported from Tennessee to Texas in 1984 and 1985. All cattle were seronegative by the BTV IDT at the initial bleeding in Texas in 1984 and 1985. In 1984, 16 of 40 (40%) cattle seroconvertedas assessed by results of the BTV IDT. In 16 seropositive cattle in 1984, neutralizing antibodies were detected to BTV serotypes 10 (n = 7), 11 (n = 3), and 17 (n = 11), and EHDV serotypes 1 (n = 1) and 2 (n = 7). In 1984, no cattle seroconverted to BTV-2 or BTV-13. In 1985, 10 of 36 (27.8%) cattle seroconverted as assessed by results of the IDT. Of the 10 seropositive cattle in 1985, neutralizing antibodies were detected to BTV serotypes 10 (n = 10), 11 (n = 10), 13 (n = 7), and 17 (n = 5), and EHDV serotypes 1 (n = 1) and 2 (n = 7). In 1985, no catttle seroconverted to BTV-2. Clinical diseases attributable to BTV or EHDV was not detected in these cattle in 1984 or 1985.
Mostrar más [+] Menos [-]