Refinar búsqueda
Resultados 1-9 de 9
Electroencephalography as a diagnostic technique for canine neurological diseases
2016
Wrzosek, Marcin
Electroencephalography (EEG) is a non-invasive examination method for the assessment of functional central nervous system (CNS) disturbances. In human medicine it has a special importance as a diagnostic tool for epilepsy. Although many studies were done on the use of EEG for diagnostics of canine central nervous system disorders, the technique is still not applied routinely. The purpose of this paper was to review the use of the electroencephalography in canine neurological disorders of central nervous system diagnosis and assess the future perspectives of this technique in veterinary medicine.
Mostrar más [+] Menos [-]Use of three-dimensional time-of-flight magnetic resonance angiography at 1.5 Tesla to evaluate the intracranial arteries of 39 dogs with idiopathic epilepsy
2019
Ishikawa, Chieko | Ito, Daisuke | Tanaka, Natsumi | Kitagawa, Masato
OBJECTIVE To assess visualization of the intracranial arteries and internal carotid artery (ICA) on 3-D time-of-flight (TOF) magnetic resonance angiography (MRA) images obtained at 1.5 T and to investigate factors that affect the image quality of those arteries in dogs. ANIMALS 39 dogs with idiopathic epilepsy. PROCEDURES Each dog underwent 3-D TOF MRA, and 5 pairs of intracranial arteries, the basilar artery, and both ICAs were evaluated. Each artery was assigned an image-quality score on a scale of 0 to 3, where 0 = poor and 3 = excellent. Multivariable regression analysis was used to assess whether age, body weight (BW), serum total cholesterol concentration, intracranial volume (ICV), and mean arterial pressure were significantly associated with the image quality of each vessel. RESULTS In all dogs, the image-quality score was 2 or 3 for the proximal middle cerebral arteries, basilar artery, and caudal aspect of the caudal communicating arteries. In some dogs, the rostral cerebellar arteries, rostral aspect of the caudal communicating arteries, and middle and rostral aspects of the ICA were poorly visualized. For various arteries, image quality was negatively associated with age and positively associated with BW and ICV. CONCLUSIONS AND CLINICAL RELEVANCE Results indicated that 3-D TOF MRA images obtained at 1.5 T did not consistently and clearly delineate the ICA and narrow or peripheral intracranial arteries of dogs; therefore, careful attention is required when such images are assessed. Patient age, BW, and ICV can also affect the image quality of some intracranial arteries on 3-D TOF MRA images.
Mostrar más [+] Menos [-]Evaluation of cell-based and tissue-based immunofluorescent assays for detection of glial fibrillary acidic protein autoantibodies in the cerebrospinal fluid of dogs with meningoencephalitis of unknown origin and other central nervous system disorders
2021
Rozental, Aaron J. | McGrath, Stephanie | Mooney, Allison P. | Hinson, Shannon R. | McKeon, Andrew | Pittock, Sean J. | Gross, Chase C. | Tyler, Kenneth L.
OBJECTIVE To evaluate whether cell-based and tissue-based immunofluorescent assays (IFAs) run in parallel could be used to detect glial fibrillary acidic protein (GFAP) autoantibodies in the CSF of dogs with meningoencephalitis of unknown origin (MUO) and other CNS disorders ANIMALS 15 CSF samples obtained from dogs with presumed MUO (n = 5), CNS disease other than MUO (5), and idiopathic epilepsy (5). PROCEDURES All CSF samples underwent parallel analysis with a cell-based IFA that targeted the α isoform of human GFAP and a tissue-based IFA that involved mouse brain cryosections. Descriptive data were generated. RESULTS Only 1 CSF sample yielded mildly positive results on the cell-based IFA; that sample was from 1 of the dogs with presumed MUO. The remaining 14 CSF samples tested negative on the cell-based IFA. All 15 CSF samples yielded negative results on the tissue-based IFA. CONCLUSIONS AND CLINICAL RELEVANCE Results suggested that concurrent use of a cell-based IFA designed to target the human GFAP-α isoform and a tissue-based IFA that involved mouse tissue cryosections was inadequate for detection of GFAP autoantibodies in canine CSF samples. Given that GFAP autoantibodies were likely present in the CSF samples analyzed, these findings suggested that epitopes differ substantially between canine and human GFAP and that canine GFAP autoantibody does not bind to mouse GFAP. Without a positive control, absence of GFAP autoantibody in this cohort cannot be ruled out. Further research is necessary to develop a noninvasive and sensitive method for diagnosis of MUO in dogs.
Mostrar más [+] Menos [-]Neuropathologic features of the hippocampus and amygdala in cats with familial spontaneous epilepsy
2018
Yu, Yoshihiko | Hasegawa, Daisuke | Hamamoto, Yuji | Mizoguchi, Shunta | Kuwabara, Takyuki | Fujiwara-Igarashi, Aki | Tsuboi, Masaya | Chambers, James Ken | Fujita, Michio | Uchida, Kazuyuki
OBJECTIVE To investigate epilepsy-related neuropathologic changes in cats of a familial spontaneous epileptic strain (ie, familial spontaneous epileptic cats [FSECs]). ANIMALS 6 FSECs, 9 age-matched unrelated healthy control cats, and 2 nonaffected (without clinical seizures)dams and 1 nonaffected sire of FSECs. PROCEDURES Immunohistochemical analyses were used to evaluate hippocampal sclerosis, amygdaloid sclerosis, mossy fiber sprouting, and granule cell pathological changes. Values were compared between FSECs and control cats. RESULTS Significantly fewer neurons without gliosis were detected in the third subregion of the cornu ammonis (CA) of the dorsal and ventral aspects of the hippocampus as well as the central nucleus of the amygdala in FSECs versus control cats. Gliosis without neuronal loss was also observed in the CA4 subregion of the ventral aspect of the hippocampus. No changes in mossy fiber sprouting and granule cell pathological changes were detected. Moreover, similar changes were observed in the dams and sire without clinical seizures, although to a lesser extent. CONCLUSIONS AND CLINICAL RELEVANCE Findings suggested that the lower numbers of neurons in the CA3 subregion of the hippocampus and the central nucleus of the amygdala were endophenotypes of familial spontaneous epilepsy in cats. In contrast to results of other veterinary medicine reports, severe epilepsy-related neuropathologic changes (eg, hippocampal sclerosis, amygdaloid sclerosis, mossy fiber sprouting, and granule cell pathological changes) were not detected in FSECs. Despite the use of a small number of cats with infrequent seizures, these findings contributed new insights on the pathophysiologic mechanisms of genetic-related epilepsy in cats.
Mostrar más [+] Menos [-]Interictal diffusion and perfusion magnetic resonance imaging features of cats with familial spontaneous epilepsy
2017
Mizoguchi, Shunta | Hasegawa, Daisuke | Hamamoto, Yuji | Yu, Yoshihiko | Kuwabara, Takyuji | Fujiwara-Igarashi, Aki | Fujita, Michio
OBJECTIVE To evaluate the usefulness of diffusion and perfusion MRI of the cerebrum in cats with familial spontaneous epilepsy (FSECs) and identify microstructural and functional deficit zones in affected cats. ANIMALS 19 FSECs and 12 healthy cats. PROCEDURES Diffusion-weighted, diffusion tensor, and perfusion-weighted MRI of the cerebrum were performed during interictal periods in FSECs. Imaging findings were compared between FSECs and control cats. Diffusion (apparent diffusion coefficient and fractional anisotropy) and perfusion (relative cerebral blood volume [rCBV], relative cerebral blood flow [rCBF], and mean transit time) variables were measured bilaterally in the hippocampus, amygdala, thalamus, parietal cortex gray matter, and subcortical white matter. Asymmetry of these variables in each region was also evaluated and compared between FSECs and control cats. RESULTS The apparent diffusion coefficient of the total amygdala of FSECs was significantly higher, compared with that of control cats. The fractional anisotropy of the right side and total hippocampus of FSECs was significantly lower, compared with that of control cats. The left and right sides and total hippocampal rCBV and rCBF were significantly lower in FSECs than in control cats. The rCBV and rCBF of the parietal cortex gray matter in FSECs were significantly lower than in control cats. CONCLUSIONS AND CLINICAL RELEVANCE In FSECs, diffusion and perfusion MRI detected microstructural changes and hypoperfusion (lowered function) in the cerebrum during interictal periods from that of healthy cats. These findings indicated that diffusion and perfusion MRI may be useful for noninvasive evaluation of epileptogenic foci in cats.
Mostrar más [+] Menos [-]Quantitative analysis of brain perfusion parameters in dogs with idiopathic epilepsy by use of magnetic resonance imaging
2018
Hartmann, Antje | Klopmann, Clea von | Lautenschlager, Ines E. | Scholz, Volkher B. | Schmidt, Martin J.
OBJECTIVE To quantitatively analyze brain perfusion parameters in dogs with idiopathic epilepsy (IE) by use of MRI and to compare those findings with brain perfusion parameters for healthy dogs. ANIMALS 12 client-owned dogs with IE. PROCEDURES For each dog, standard MRI and perfusion-weighted imaging (before and after injection of gadoteric acid contrast medium) sequences of the brain were obtained during the interictal period by means of the same protocol used in a comparable study of healthy dogs. Time of contrast medium arrival, time to peak contrast enhancement, mean contrast transit time, and cerebral blood flow were calculated for the caudate nucleus, thalamus, piriform lobe, hippocampus, semioval center, and temporal cerebral cortex. Parameters for each structure were compared between dogs with IE and healthy dogs. RESULTS Dogs with IE had a significantly greater mean time of contrast arrival and lower mean cerebral blood flow than healthy dogs. Differences in cerebral blood flow between dogs with IE and healthy dogs were most pronounced in the piriform lobe, thalamus, and temporal cerebral cortex. The mean contrast transit time did not differ between dogs with IE and healthy dogs. CONCLUSIONS AND CLINICAL RELEVANCE Results suggested that, compared with healthy dogs, dogs with IE have decreased blood perfusion of the brain. Findings of this study can be used as a basis for further research into functional changes within the brains of epileptic dogs during the interictal phase.
Mostrar más [+] Menos [-]Evaluation of matrix metalloproteinase-2 and -9 in the cerebrospinal fluid of dogs with intracranial tumors
2013
Mariani, Christopher L. | Boozer, Lindsay B. | Braxton, Alicia M. | Platt, Simon R. | Vernau, Karen M. | McDonnell, John J. | Guevar, Julien
Objective: To identify matrix metalloproteinase (MMP)-2 and -9 in CSF from dogs with intracranial tumors. Sample: CSF from 55 dogs with intracranial tumors and 37 control dogs. Procedures: Latent and active MMP-2 and -9 were identified by use of gelatin zymography. The presence of MMPs in the CSF of dogs with intracranial tumors was compared with control dogs that were clinically normal and with dogs that had idiopathic or cryptogenic epilepsy or peripheral vestibular disease. Relationships between MMP-9 and CSF cell counts and protein were also investigated. Results: Latent MMP-2 was found in CSF samples from all dogs, although active MMP-2 was not detected in any sample. Latent MMP-9 was detected in a subset of dogs with histologically documented intracranial tumors, including meningiomas (2/10), gliomas (3/10), pituitary tumors (1/2), choroid plexus tumors (5/6), and lymphoma (4/4), but was not detected in any control samples. Dogs with tumors were significantly more likely than those without to have detectable MMP-9 in the CSF, and the presence of MMP-9 was associated with higher CSF nucleated cell counts and protein concentration. Conclusions and Clinical Relevance: Latent MMP-9 was detected in most dogs with choroid plexus tumors or lymphoma but in a smaller percentage of dogs with meningiomas, gliomas, or pituitary tumors. Detection of MMP in CSF may prove useful as a marker of intracranial neoplasia or possibly to monitor response of tumors to therapeutic intervention.
Mostrar más [+] Menos [-]Comparison of concentrations of γ-aminobutyric acid and glutamate in cerebrospinal fluid of dogs with idiopathic epilepsy with and without seizure-related magnetic resonance imaging hyperintense areas in the limbic system
2013
Creevy, Kate E. | Gagnepain, John F. | Platt, Simon R. | Edwards, Gaylen L. | Kent, Marc
Objective-To investigate differences in CSF concentrations of excitatory and inhibitory neurotransmitters in dogs with and without T2-weighted (T2W) MRI hyperintense areas in the limbic system. Sample-Archived CSF samples and stored brain MRI images of 5 healthy research dogs (group 1), 8 dogs with idiopathic epilepsy (IE) with no abnormal MRI findings (group 2), and 4 dogs with IE with hyperintense areas in the limbic system detected by means of T2W MRI (group 3). Procedures-Archived CSF samples and stored MRI images obtained from all dogs were evaluated. Dogs in groups 2 and 3 were matched on the basis of age and breed. High-performance liquid chromatography was used to evaluate glutamate and γ-aminobutyric acid (GABA) concentrations in CSF samples. Results-Glutamate concentrations were higher in CSF of both groups of dogs with IE than in healthy dogs. However, glutamate concentrations in CSF were not significantly higher in dogs with IE and with hyperintense areas than in dogs with IE but no abnormal MRI findings. Concentrations of GABA in CSF were higher in group 3 than in group 2 and in group 2 than in group 1. Conclusions and Clinical Relevance-No significant difference was evident between glutamate concentrations in CSF of dogs with IE and with and without hyperintense areas detected by means of T2W MRI. However, glutamate concentrations typically were higher in CSF of dogs with IE and MRI hyperintense areas. Future studies with larger sample sizes should be conducted to confirm this finding and to determine the clinical importance of high glutamate concentrations in CSF of dogs with IE.
Mostrar más [+] Menos [-]Relationship of angiogenesis and microglial activation to seizure-induced neuronal death in the cerebral cortex of Shetland Sheepdogs with familial epilepsy
2013
Sakurai, Masashi | Morita, Takehito | Takeuchi, Takashi | Shimada, Akinori
Objective: To determine whether angiogenesis and microglial activation were related to seizure-induced neuronal death in the cerebral cortex of Shetland Sheepdogs with familial epilepsy. Animals: Cadavers of 10 Shetland Sheepdogs from the same family (6 dogs with seizures and 4 dogs without seizures) and 4 age-matched unrelated Shetland Sheepdogs. Procedures: Samples of brain tissues were collected after euthanasia and then fixed in neutral phosphate–buffered 10% formalin and routinely embedded in paraffin. The fixed samples were sectioned for H&E staining and immunohistochemical analysis. Results: Evidence of seizure-induced neuronal death was detected exclusively in samples of cerebral cortical tissue from the dogs with familial epilepsy in which seizures had been observed. The seizure-induced neuronal death was restricted to tissues from the cingulate cortex and sulci surrounding the cerebral cortex. In almost the same locations as where seizure-induced neuronal death was identified, microvessels appeared longer and more tortuous and the number of microvessels was greater than in the dogs without seizures and control dogs. Occasionally, the microvessels were surrounded by oval to flat cells, which had positive immunohistochemical results for von Willebrand factor. Immunohistochemical results for neurons and glial cells (astrocytes and microglia) were positive for vascular endothelial growth factor, and microglia positive for ionized calcium–binding adapter molecule 1 were activated (ie, had swollen cell bodies and long processes) in almost all the same locations as where seizure-induced neuronal death was detected. Double-label immunofluorescence techniques revealed that the activated microglia had positive results for tumor necrosis factor-α, interleukin-6, and vascular endothelial growth factor receptor 1. These findings were not observed in the cerebrum of dogs without seizures, whether the dogs were from the same family as those with epilepsy or were unrelated to them. Conclusions and Clinical Relevance: Signs of angiogenesis and microglial activation corresponded with seizure-induced neuronal death in the cerebral cortex of Shetland Sheepdogs with familial epilepsy. Microglial activation induced by vascular endothelial growth factor and associated proinflammatory cytokine production may accelerate seizure-induced neuronal death in dogs with epilepsy.
Mostrar más [+] Menos [-]