Refinar búsqueda
Resultados 1-2 de 2
Effects of parturition and dexamethasone on DNA methylation patterns of IFN-γ and IL-4 promoters in CD4+ T-lymphocytes of Holstein dairy cows
2013
This study investigated epigenetic mechanisms by which DNA methylation affects the function of bovine adaptive immune system cells, particularly during the peripartum period, when shifts in type 1 and type 2 immune response (IR) biases are thought to occur. Stimulation of CD4+ T-lymphocytes isolated from 5 Holstein dairy cows before and after parturition with concanavalin A (ConA) and stimulation of CD4+ T-lymphocytes isolated from 3 Holstein dairy cows in mid-lactation with ConA alone or ConA plus dexamethasone (Dex) had significant effects on production of the cytokines interferon gamma (IFN-γ, type 1) and interleukin 4 (IL-4, type 2) that were consistent with DNA methylation profiles of the IFN-γ gene promoter region but not consistent for the IL-4 promoter region. ConA stimulation increased the production of both cytokines before and after parturition. It decreased DNA methylation in the IFN-γ promoter region but increased for IL-4 promoter region. Parturition was associated with an increase in IFN-γ production in ConA-stimulated cells that approached significance. Overall, DNA methylation in both promoter regions increased between the prepartum and postpartum periods, although this did not correlate with secreted cytokine concentrations. Dexamethasone treated cells acted in a manner consistent with the glucocorticoid’s immunosuppressive activity, which mimicked the change at the IFN-γ promoter region observed during parturition. These results support pregnancy as type 2 IR biased, with increases of IFN-γ occurring after parturition and an increase in IL-4 production before calving. It is likely that these changes may be epigenetically controlled.
Mostrar más [+] Menos [-]Mitochondrial transcription factor A (Tfam) gene sequencing and mitochondrial evaluation in inherited retinal dysplasia in miniature schnauzer dogs
2011
Bauer, Bianca S. | Forsyth, George W. | Sandmeyer, Lynne S. | Grahn, Bruce H.
Mitochondrial transcription factor A (Tfam) has been implicated in the pathogenesis of retinal dysplasia in miniature schnauzer dogs and it has been proposed that affected dogs have altered mitochondrial numbers, size, and morphology. To test these hypotheses the Tfam gene of affected and normal miniature schnauzer dogs with retinal dysplasia was sequenced and lymphocyte mitochondria were quantified, measured, and the morphology was compared in normal and affected dogs using transmission electron microscopy. For Tfam sequencing, retina, retinal pigment epithelium (RPE), and whole blood samples were collected. Total RNA was isolated from the retina and RPE and reverse transcribed to make cDNA. Genomic DNA was extracted from white blood cell pellets obtained from the whole blood samples. The Tfam coding sequence, 5' promoter region, intron1 and the 3' non-coding sequence of normal and affected dogs were amplified using polymerase chain reaction (PCR), cloned and sequenced. For electron microscopy, lymphocytes from affected and normal dogs were photographed and the mitochondria within each cross-section were identified, quantified, and the mitochondrial area (μm2) per lymphocyte cross-section was calculated. Lastly, using a masked technique, mitochondrial morphology was compared between the 2 groups. Sequencing of the miniature schnauzer Tfam gene revealed no functional sequence variation between affected and normal dogs. Lymphocyte and mitochondrial area, mitochondrial quantification, and morphology assessment also revealed no significant difference between the 2 groups. Further investigation into other candidate genes or factors causing retinal dysplasia in the miniature schnauzer is warranted.
Mostrar más [+] Menos [-]