Refinar búsqueda
Resultados 1-5 de 5
Evaluation of a portable media device for use in determining postural stability in standing horses
2017
Moorman, Valerie J. | Kawcak, Christopher E. | King, Melissa R.
OBJECTIVE To determine the ability of an accelerometer within a commercially available portable media device (PMD) to measure changes in postural stability of standing horses during various stance conditions and to compare these results with data obtained by use of a stationary force platform. ANIMALS 7 clinically normal horses. PROCEDURES A PMD was mounted on a surcingle; the surcingle was placed immediately caudal to the highest point of the shoulders (withers). Each horse was examined while standing on a stationary force platform system in a normal square stance, forelimb base-narrow stance, and normal square stance at 5 and 10 minutes after sedation induced by IV administration of xylazine hydrochloride. A minimum of 5 trials were conducted for each stance condition. Ranges of craniocaudal and mediolateral motion as well as SDs were collected for the PMD and force platform system. Analyses were performed with mixed-model ANOVAs, and correlation coefficients were calculated. RESULTS Stance condition significantly altered craniocaudal accelerations measured by use of the PMD, all craniocaudal and mediolateral displacements of the center of pressure, and velocities measured by use of the stationary force platform. For both the PMD and force platform, SDs were significantly affected by stance condition in both craniocaudal and mediolateral directions. Correlation coefficients between the systems for all variables were low to moderate (r = 0.18 to 0.58). CONCLUSIONS AND CLINICAL RELEVANCE Body-mounted PMDs should be investigated for use in assessment of postural stability in horses with neuromuscular abnormalities.
Mostrar más [+] Menos [-]Magnetic resonance arthrography of the scapulohumeral joint in dogs, using gadopentetate dimeglumine
1995
Bree, H van | Ryssen, B. van | Degryse, H. | Ramon, F.
Six scapulohumeral joints (3 normal joints and 3 joints with radiographic evidence of osteochondrosis) underwent conventional magnetic resonance (MR) imaging and MR scapulohumeral arthrography to evaluate delineation of the articular cartilage. The MR arthrography was performed, using 5 ml of 500 micromolar gadopentetate dimeglumine (Gd-DTPA) as a contrast medium. Delineation of normal articular cartilage and cartilage defects was less accurate after intra-articular administration of Gd-DTPA. Therefore, it was concluded that MR arthrography with Gd-DTPA is unrewarding for evaluation of osteochondrosis lesions.
Mostrar más [+] Menos [-]Elastic properties of collateral and sesamoid ligaments in the forelimbs of equine cadavers
2019
Legg, Kylie A. | Colborne, G Robert | Gee, Erica K. | Rogers, Chris W.
OBJECTIVE To evaluate the elastic modulus of various ligaments of the forelimbs of cadaveric horses. SAMPLE 408 ligaments from 37 forelimbs of 10 Thoroughbred cadavers and cadavers of 9 other horse breeds. PROCEDURES Collateral ligaments and straight and oblique sesamoid ligaments were harvested from the proximal interphalangeal, metacarpophalangeal, carpal, and elbow joints of both forelimbs of all 19 horses. Ligament dimensions were measured, and the elastic modulus was determined by tensile testing the ligaments with a strain rate of 1 mm•s(-1). RESULTS Elastic modulus of the ligaments differed significantly among joints. Highest mean ± SE elastic modulus was for the medial collateral ligament of the metacarpophalangeal joints of Thoroughbreds (68.3 ± 11.0 MPa), and the lowest was for the lateral collateral ligament of the elbow joints of other breeds (2.8 ± 0.3 MPa). Thoroughbreds had a significantly higher elastic modulus for the collateral ligaments of the proximal interphalangeal and metacarpophalangeal joints, compared with values for the other breeds. There was large variation in elastic modulus. Elastic modulus was negatively affected by age. In the ligaments in the distal aspect of the forelimbs, elastic modulus was negatively affected by height at the highest point of the shoulders (ie, withers). CONCLUSIONS AND CLINICAL RELEVANCE Cross-sectional area and elastic modulus of collateral ligaments in the forelimbs of equine cadavers differed between breeds and among joints, which may have been reflective of their relative physiologic function under loading during exercise.
Mostrar más [+] Menos [-]Effect of contact time on variance of ground reaction forces during force platform gait analysis of a heterogeneous sample of clinically normal dogs
2018
Hoffman, Christopher L. | Volstad, Nicola J. | Hans, Eric C. | Nemke, Brett W. | Muir, Peter
OBJECTIVE To develop contact time (ConT) and withers height-normalized relative ConT (ConT*) for force platform gait analysis of dogs. ANIMALS 29 healthy client-owned dogs. PROCEDURES Height at the most dorsal aspect of the shoulders (withers) was measured with a framing square. Dogs were trotted across a force platform at their preferred velocity with controlled acceleration (± 0.5 m/s2). Ranges of ConT and ConT* centered on the population mean ConT were created. Variance effects on ground reaction forces (GRFs) for 4 thoracic limb and 4 pelvic limb ConT and associated ConT* ranges were examined. Efficiency of trial capture and effects of velocity ranges on GRF variance were determined. RESULTS Individual dogs had the greatest effect on GRF variance for thoracic and pelvic limbs. Narrow ConT and ConT* ranges had few significant effects on GRFs but were inefficient at capturing trials. The ConT ranges of 0.22 to 0.29 seconds and 0.19 to 0.25 seconds for thoracic and pelvic limbs, respectively, provided the most efficient rates of trial capture with the fewest significant effects on GRFs. Compared with ConT and ConT* ranges, relative velocity ranges had higher efficiency and smaller GRF variance effects. CONCLUSIONS AND CLINICAL RELEVANCE Dogs of various morphologies have differing limb velocities. Use of ConT as a surrogate for limb velocity may improve GRF data quality. We identified ConT and ConT* ranges associated with low GRF variance. However, relative velocity ranges captured data more efficiently. Efficient capture of data may help avoid worsening of lameness during gait analysis of dogs.
Mostrar más [+] Menos [-]Variance associated with walking velocity during force platform gait analysis of a heterogeneous sample of clinically normal dogs
2017
Piazza, Alexander M. | Binversie, Emily E. | Baker, Lauren A. | Nemke, Brett | Sample, Susannah J. | Muir, Peter
OBJECTIVE To determine whether walking at specific ranges of absolute and relative (V*) velocity would aid efficient capture of gait trial data with low ground reaction force (GRF) variance in a heterogeneous sample of dogs. ANIMALS 17 clinically normal dogs of various breeds, ages, and sexes. PROCEDURES Each dog was walked across a force platform at its preferred velocity, with controlled acceleration within 0.5 m/s2. Ranges in V* were created for height at the highest point of the shoulders (withers; WHV*). Variance effects from 8 walking absolute velocity ranges and associated WHV* ranges were examined by means of repeated-measures ANCOVA. RESULTS The individual dog effect provided the greatest contribution to variance. Narrow velocity ranges typically resulted in capture of a smaller percentage of valid trials and were not consistently associated with lower variance. The WHV* range of 0.33 to 0.46 allowed capture of valid trials efficiently, with no significant effects on peak vertical force and vertical impulse. CONCLUSIONS AND CLINICAL RELEVANCE Dogs with severe lameness may be unable to trot or may have a decline in mobility with gait trial repetition. Gait analysis involving evaluation of individual dogs at their preferred absolute velocity, such that dogs are evaluated at a similar V*, may facilitate efficient capture of valid trials without significant effects on GRF. Use of individual velocity ranges derived from a WHV* range of 0.33 to 0.46 can account for heterogeneity and appears suitable for use in clinical trials involving dogs at a walking gait.
Mostrar más [+] Menos [-]