Refinar búsqueda
Resultados 1-9 de 9
Inheritance of a sign of apricot color of ray flowers of sunflower (Helianthus annuus L.)
2019
Ведмедєва, К. В
Purpose. To reveal the nature of the inheritance of apricot color of the ray flowers of the sunflower and the type of interaction of genes causing different colors. Methods. Field experiment, genetic analysis. The statistical validity of the results was evaluated using Pearson’s criterion. Results. We conducted crosses of the ‘KG13’ line as the source of the sign of apricot color with sunflower lines that had yellow, orange and lemon colors of the ray flowers. In the first generation, from crossing the ‘KG13’ line with five lines, which had a yellow color, only a yellow color of ray flowers was observed. In the second generation, a 3 : 1 split was observed: three-quarters with yellow flowers and one with apricot flowers. Line ‘KG13’ was crossed with three lines (‘HA298’, ‘SL2966’, ‘LD72/3’), which had an orange color of flowers. In the first generation, orange flowers were observed; in the second generation, splitting was recorded: three-quarters of offsprings with orange-colored flowers and one-quarter with apricot flowers. The line ‘KG13’ was crossed with ‘KG107’ and ‘ZL678’, which had lemon-colored flowers. The resulting plants of the first generation had a yellow coloration of ray flowers. In the second generation, five classes of plants by coloration of ray flowers were obtained: yellow, orange, apricot, lemon, lemon-apricot in the ratio 6 : 4 : 3 : 2 : 1. According to these data, the genes of lemon and apricot color have a complementary effect, the homozygous state of orange allele is epistatic to the recessive homozygote of the lemon-colored gene. The ‘KG108’ line with a combination of genes responsible for apricot and light yellow color has its own light apricot color and in crossings with a yellow colored line in the second generation gives splitting in the ratio 9 : 3 : 3 : 1. Conclusions. It was revealed that the apricot color of the ray flowers of the sunflower line ‘KG13’ is due to the homozygous state of the allele of the same gene whose second allele causes an orange color in the lines ‘NA298’, ‘SL2966’ and ‘LD72/3’. The complementary action of alleles responsible for apricot and lemon, as well as apricot and light yellow coloration of ray flowers was determined. A case of epistasis of homozygotes along the allele controlling the orange color over the recessive homozygote of the gene, which is controlled by the lemon color in the crossing combination ‘ZL678’ / ‘KG13’, was revealed.
Mostrar más [+] Menos [-]Differentiation and identification of winter bread wheat verieties according to a complex of baking quality indicators
2021
Демидов, О. А | Гудзенко, В. М | Правдзіва, І. В
Purpose. Reveal the features of the formation of a quality indicator complex in winter bread wheat depending on the growing seasons, preceding crops and sowing dates, as well as differentiate and identify genotypes with high and stable levels of manifestation. Methods. Field, laboratory, statistical. Results. A different share of the influence of the year conditions, the preceding crop, the sowing date and their interactions on the quality indicators of some varieties was determined. A different reaction of varieties in terms of quality indicators, depending on the investigated factors was revealed. The variation was very low for test weight, water absorption ability of flour, crumb porosity. Strong variation was observed for flour strength after sunflower and soybean as preceding crops, alveograph configuration ratio after sunflower and soybean, index of elasticity dough after corn, valorimetric value after mustard, dough dilution degree after green manure, sunflower, corn and especially after mustard and soybeans. The varieties, which on average for 2016/17–2018/19 reliably exceeded the standard both in individual indicators and in general in terms of physical indicators of grain and flour quality and dough rheological properties. GYT biplot analysis identified the genotypes ‘MIP Vidznaka’ and ‘MIP Assol’ with a more optimal combination of increased yield and a complex of quality indicators in terms of different years, preceding crops and sowing dates. Some varieties, namely, ‘Estafeta myronivs’ka’, ‘Trudivnytsia myronivs’ka’, ‘MIP Valensiia’, ‘MIP Yuvileina’, ‘Balada myronivs’ka’, ‘Vezha myronivs’ka’ were inferior to them, but were significantly superior the others. Conclusions. The selected by quality indicators varieties as genetic sources can be used in breeding process. A more stable level of yield and quality indicators at different sowing dates after different preceding crops should be expected for growing varieties ‘MIP Vidznaka’, ‘MIP Assol’, as well as ‘Estafeta myronivs’ka’, ‘Trudivnytsia myronivs’ka’, ‘MIP Valensiia’, ‘MIP Yuvileina’, ‘Balada myronivs’ka’, ‘Vezha myronivs’ka’. The peculiarities obtained in the research should be taken into account when evaluating and differentiating genotypes in breeding process, as well as developing basic elements of technology for growing the varieties of winter bread wheat.
Mostrar más [+] Menos [-]Yield plasticity of sunflower hybrids in the conditions of the Left-Bank Forest-Steppe of Ukraine
2020
Риженко, А. С | Каленська, С. М | Присяжнюк, О. І | Мокрієнко, В. А
Purpose. To determine the level of productivity of sunflower hybrids, their stability and plasticity for cultivation in the Left Bank Forest-Steppe of Ukraine. Methods. The field experiment was performed in the conditions of the Left-Bank Forest-Steppe of Ukraine in 2016–2018. The peculiarities of plant growth and development, formation of yield of hybrids ‘Ukrainskyi F1’ (k), ‘P64LL125’, ‘P63LE10’, ‘P64F50’, ‘P64F66’, ‘P63LL06’, ‘NK Konti’ (k), ‘NK Brio’, ‘P64LE99’, ‘Laskala’, ‘Kupava’. Yield plasticity was calculated and analyzed by the Ebergard – Russell method. Results. Over the years of research, the average yield of sunflower hybrids in the Left-Bank Forest-Steppe of Ukraine varied from 2.71 to 4.04 t/ha. The lowest yield was shown by the ‘Ukrainskyi F1’ hybrid – 2.42–3.05 t/ha, the highest ‘Laskala’ – 3.79–4.26 t/ha. It was determined that in the conditions of the Left-Bank Forest-Steppe, there is no absolute predominance of medium-ripe hybrids in terms of yield. Conclusions. According to the results of the analysis of yield plasticity of sunflower hybrids, it was determined that the group of samples with high yield plasticity includes ‘Ukrainskyi F1’, ‘P64F50’, ‘P64F66’, ‘NK Konti’, ‘NK Brio’, ‘P64LE99’, ‘Lascala’ and ‘Kupava’. They respond to the improvement of the level of agricultural technology and provide the maximum yield only under the conditions of optimal factors. Hybrids ‘P64LL125’, ‘P63LE10’ and ‘P63LL06’ are more stable in response to changes in growing conditions without reductions in yield. As for the shares of the influence of the studied factors, the yield of the hybrid ‘Ukrainskyi F1’ was most influenced by the conditions of the year, ‘NK Brio’ – the sowing rate. For the ‘NK Ferti’ hybrid, the conditions of the year and the sowing rate are equally important.
Mostrar más [+] Menos [-]Evaluation of yield and stability of bread winter wheat genotypes (Triticum aestivum L.) depending on predecessors and sowing dates
2020
Правдзіва, І. В | Демидов, О. А | Гудзенко, В. М | Дергачов, О. Л
Purpose. To determine the effectiveness of using contrasting sowing dates after different predecessors to assess the genotypes of bread winter wheat in terms of yield and stability. Methods. Field, laboratory, mathematical statistics. Results. A different, but reliable level of influence on the yield of bread winter wheat genotypes of such factors as conditions of the year of cultivation (66.2%), predecessors (12.5%), sowing date (6.1%) and genotype (1.7%) was revealed. Significant differences were noted in the response of the studied genotypes to the sowing date after different predecessors. Relatively less influence of the predecessors on the yield of the varieties ‘Estafeta Myronivska’ and ‘Vezha Myronivska’ was revealed, more – for the varieties ‘MIP Darunok’, ‘MIP Kniazhna’ and ‘MIP Vyshyvanka’. The sowing dates had less influence on the yield of the varieties ‘MIP Fortuna’, ‘MIP Vyshyvanka’ and ‘Trudivnytsia Myronivska’. A general tendency for decrease in the average annual yield was established in the experiment with a shift in the sowing dates from September 26 to October 16. However, for the number of genotypes after certain predecessors, the optimal sowing date was the 5th of October: after the predecessor, green-manure fallow – for varieties ‘Trudivnytsia myronivska’, ‘MIP Assol’ and ‘MIP Dniprianka’, after mustard – ‘Vezha Myronivska’, after sunflower – ‘MIP Fortuna’, after corn – ‘MIP Fortuna’ and ‘Podolianka’. In terms of sowing dates, the least variation in yield was found after the predecessors green manure, mustard and corn varieties ‘MIP Vyshyvanka’, ‘Balada Myronivska’, ‘MIP Kniazhna’, ‘Estafeta Myronivska’. Using the GGE biplot, it was found that close to the ‘ideal environment’ for the realization of the yield level of most genotypes was the second sowing date after greenmanure fallow predecessor. For different sowing dates and predecessors, on average for three years, the optimal combination of the level of yield and stability was noted for the varieties ‘Trudivnytsia Myronivska’, ‘MIP Vidznaka’, ‘MIP Assol’, ‘Estafeta Myronivska’, ‘MIP Valensiia’. Conclusions. Thus, the use of different so wing dates after various predecessors is an effective approach to organization of genotype-environmental tests. It makes it possible to identify the genotypes which are specifically adapted to certain conditions (predecessors and sowing dates) and genotypes with a relatively high level of stability when sowing after various predecessors and on different dates. This approach can be used both at the final stage of breeding to differentiate breeding lines for yield and stability, and in the development of basic elements of technology for growing newly created varieties.
Mostrar más [+] Menos [-]A selection and seed-grower are a substantial factor of increase to the productivity of oil-bearing cultures
2013
Кириченко, В. В | Коломацька, В. П | Рудник-Іващенко, О. І
Analysis of oilseeds in Ukraine, including sunflower, soybean, winter and spring rape, mustard, linseed, sesame, spring false flax, safflower. Presented research-based elements of the technology of cultivation. Described seed of oilseeds. Named most promising varieties of these crops. Disclosed their productive and qualitative potential. The above varietal structure of oilseeds in the State Register of plant varieties suitable for dissemination in Ukraine for years. In order to ensure stable population of oil and food, which include oil, and for the implementation of programs related to soil fertility, scientifically grounded recommended area of oilseeds in Ukraine for 2013–2015 years, ha.
Mostrar más [+] Menos [-]Adaptability of F1 sunflower hybrids, created according to an integrated system of line selection for economically valuable traits in various agroclimatic zones
2021
Бабич, В. О | Боровська, І. Ю | Шарипіна, Я. Ю | Парій, Я. Ф | Симоненко, Ю. В
Purpose. Determine the ecological plasticity and productivity of F1 sunflower hybrids created on the basis of maternal and parental lines, selected according to an accelerated selection system of lines resistant to herbicides (imidazoline and sulfonylurea groups) and broomrape (Orobanche cumana Wallr.). Methods. Statistical analysis of F1 sunflower hybrids was carried out using the methods of variation statistics, regression and analysis of variance using the Microsoft Office Excel 2016 application package. Molecular biological, biotechnological and classical selection methods were used for the accelerated system of line selection. Thus, for the purpose of targeted selection of sunflower sterility fixers, we used HRG01 molecular SCAR marker to identify the gene for the restoration of pollen fertility (Rf1). To accelerate the creation of parental lines resistant to tribenuron-methyl, we used a culture of immature embryos in vitro. Results. The results of testing of F1 sunflower hybrids at Kyiv, Chernihiv, Cherkasy (Uman and Shpolianskyi districts), Khmelnytskyi, Kharkiv, Kherson and Odesa regions. The hybrids were created on the basis of selected lines, chosen according to an accelerated selection system for herbicide-resistant lines (imidazoline (IMI-hybrids) and sulfonylurea (SU-hybrids) groups) and broomrape (Orobanche cumana Wall). The standards for comparison with hybrids were: for IMI hybrids – hybrids ‘NK Neoma’ (Syngenta) and ‘ES Genesis’ (Euralis), and for SU-hybrids – ‘SY Sumiko’ (Syngenta) and ‘P64LE25’ (Pioneer). As a result, it was found that among SU-hybrids, UA 2/106 had a 3.9% higher yield when compared to the standards (‘SY Sumiko’ and ‘P64LE25’). And for IMI-hybrids it was found that hybrids UA 1/67, UA 1/66, UA 1/84 have the same yield of 2.76 t/ha as the ‘NK Neoma’ standard. IMI hybrids UA 1/92, UA 1/102 have the same yield of 2.91 t/ha as ‘ES Genesis’. Conclusions. F1 hybrids were created on the basis of the original breeding material selected due to the accelerated system of sunflower lines selection. The hybrids were analyzed according to the yield indicator. The most productive among the tested SU-hybrids was UA 2/106 hybrid, among the IMI hybrids – UA 1/67, UA 1/66, UA 1/84, UA 1/92 and UA 1/102.
Mostrar más [+] Menos [-]Evaluation weather conditions for growing sunflower (Helianthus annuus L.) in the northern part of the Left-bank Forest Steppe of Ukraine
2020
Каленська, С. М | Риженко, А. С
Pourpose. Establish compliance of heat and moisture resources to biological requirements of sunflower hybrids (Helianthus annuus), reveal criteria for assessing weather conditions in the northern regions of Ukraine; establish links between temperature, precipitation and yield. Methods. Field and mathematical methods were used. Field multifactorial experiment was conducted during 2016–2018 in the Left Bank of Ukraine, on the border of two soil and climatic zones of Ukraine - Forest-Steppe and Polissya. Peculiarities of plant growth and development, formation of "hybrids" yield (factor A) were studied: 'Ukrainskyi F1', 'P63LL06', 'NK Brio', 'NK Ferti' depending on "plant density" (factor B): 50, 55 , 60, 65 thousand pieces/hectare. We calculated and analyzed the sums of active, effective temperatures for two biological minima - 5 and 10 ° C; the sum of thermal units according to the method of Brown and Bootsma, 1993; coefficients of materiality of elements deviations of the agrometeorological mode of the current year from long-term averages; plasticity and yield stability according to the method of Eberthart S.A., Russel W.Q. (1966). Results. To pass the full cycle of sunflower plants development, the sum of active temperatures (t = 10 °C) for hybrid 'Ukrainskyi F1' – 2354.6; P63LL06 – 2306.4; 'NK Brio' – 2401.3; 'NK Ferti' – 2379.7; and the sum of effective temperatures for 'Ukrainskyi F1'- 1081.5; 'P63LL06' – 1056.9; 'NK Brio' – 1104.9; 'NK Ferti' – 1109.1 is required. The sum of temperatures, both at a biological minimum temperature 10 °C and 5 °C, meet biological needs of sunflower plants and is not a limiting factor for this crop growing. The sum of thermal units for the period April–October is 3780 on average for three years. During the period of active sunflower vegetation (April–August) the sum of thermal units is 2868–3258, significantly exceeding the sum of active and effective temperatures at biologically active temperatures 5 °С and 10 °С. The most determined limits of changes in active, effective temperatures and thermal units were observed in May – September. Conclusions. Plasticity and stability of sunflower yield more depending on hybrid and plants density than on conditions of the year. Yield stability coefficient for hybrid 'Ukrainskyi F1' was 1.68 - 2.30; 'P63LL06'- 2.51 - 3.14; 'NK Brio'- 3.15 - 4.63; 'NK Ferti' - 2.70 - 3.75 for yields, respectively: 2.16 - 3.11; 2.58 - 3.52; 3.20 - 4.12; 2.70 - 3.79 t/ha.
Mostrar más [+] Menos [-]Influence of growth regulator on plant growth, development and yield formation of sunflower hybrids (F<sub>1</sub>) under the conditions of Southern Steppe zone of Ukraine
2017
Єременко, О. А | Калитка, В. В | Каленська, С. М
Purpose. To study the effect of AKM plant growth regulator on growth, development and yield formation of sunflower (Helianthus annuus L.) hybrids in hybridization plots under the conditions of the Southern Steppe zone of Ukraine. Methods. Laboratory tests, field study, statistical evaluation. Results. The results of studies devoted to determining the optimal AKM concentration for the treatment of seeds of the maternal and paternal lines, the effect of AKM on field germination, biometric parameters of sunflower plants, seed quality (F1) and yield are presented. Three hybrids of the Ukrainian selection, such as ‘Alpha’, ‘Logos’ and ‘Persei’ were studied during 2014–2016. Optimal concentration of AKM (0.0015 g/l) was defined. The vigor of seeds processed by AKM was higher than in check variety by 0.8–12.8 р.р. (♂); 0.4–10.7 p.p. (♀), laboratory germination – by 2.3–6.1 p.p. (♂); 3.5–6.2 p.p. (♀). In 2016, the sunflower plant height for all variants exceeded this parameter to be obtained for other years of the study. This could be explained by the fact that HTC in 2016 for the BBCH 00–39 period was 1.4 times higher than in 2015. In general, hybrids as the studied factor considerably influenced sunflower yield, and the share of the hybrid (factor A) influence is 33%. This should be considered when selecting hybrids for sunflower cultivation technologies in the Steppe zone of Ukraine. Conclusions. Hydrothermal conditions of the year had the maximum impact on the formation of seed quality and yield of sunflower plants of the hybrids under study, but when using AKM growth regulator for presowing seed treatment, this negative impact was reduced by an average of 23%.
Mostrar más [+] Menos [-]Ukrainian cereals and oilseeds trade
2016
Духницький, Б. В | Сіліфонов, Т. В
Purpose. To analyze peculiarities of Ukrainian cereals and oilseeds trade, the situation on the world market, and determine future prospects of its development. Methods. Analysis and synthesis, comparative evaluation, graphic procedure. Results. The role and place of Ukraine in a total grain supply to the world market was determined. Ukraine is a world’s top ten grain producer. Among domestic agricultural products, cereals, oilseeds and sunflower oil are in the highest demand in the world. In recent years, our state has reinforced its status as one of the leading exporters of cereals. The commodity pattern of cereals and oilseeds export was analyzed with specifying most in-demand positions and the main countries purchasing these products. According to the results of 2015, Ukraine obtained the highest foreign currency revenue from export of corn, wheat and barley (in grain structure) including soybeans and rapeseed (among oil crops). Key domestic and multinational operators are the main exporters of cereals and oilseeds in Ukraine and still hold their leading position. It was found a significant excess of import price of seeds as compared with export price of crops grown in Ukraine. Assortment of maize and sunflower seeds offered by major companies-producers in Ukraine was studied. Main trends of the world grain market development are considered. Conclusions. It was established that Ukraine is one of the major exporters of cereals and oilseeds. However, volatility of their prices significantly affects the export revenue that was decreasing even with increasing export quantities in kind. The dependence of domestic grain industry development on high-quality imported seed of maize and sunflower hybrids was recorded. It is expected that in the years to come Ukraine will maintain its strong positions in the world’s grain market.
Mostrar más [+] Menos [-]