Refinar búsqueda
Resultados 1-10 de 67
Local environment modulates whole-transcriptome expression in the seagrass Posidonia oceanica under warming and nutrients excess
2022
Pazzaglia, Jessica | Santillán-Sarmiento, Alex | Ruocco, Miriam | Dattolo, Emanuela | Ambrosino, Luca | Marín-Guirao, Lazaro | Procaccini, Gabriele
The intensification of anomalous events of seawater warming and the co-occurrence with local anthropogenic stressors are threatening coastal marine habitats, including seagrasses, which form extensive underwater meadows. Eutrophication highly affects coastal environments, potentially summing up to the widespread effects of global climate changes. In the present study, we investigated for the first time in seagrasses, the transcriptional response of different plant organs (i.e., leaf and shoot apical meristem, SAM) of the Mediterranean seagrass Posidonia oceanica growing in environments with a different history of nutrient enrichment. To this end, a mesocosm experiment exposing plants to single (nutrient enrichment or temperature increase) and multiple stressors (nutrient enrichment plus temperature increase), was performed. Results revealed a differential transcriptome regulation of plants under single and multiple stressors, showing an organ-specific sensitivity depending on plants' origin. While leaf tissues were more responsive to nutrient stress, SAM revealed a higher sensitivity to temperature treatments, especially in plants already impacted in their native environment. The exposure to stress conditions induced the modulation of different biological processes. Plants living in an oligotrophic environment were more responsive to nutrients compared to plants from a eutrophic environment. Evidences that epigenetic mechanisms were involved in the regulation of transcriptional reprogramming were also observed in both plants’ organs. These results represent a further step in the comprehension of seagrass response to abiotic stressors pointing out the importance of local pressures in a global warming scenario.
Mostrar más [+] Menos [-]Effect of gibberellic acid on growth, photosynthesis and antioxidant defense system of wheat under zinc oxide nanoparticle stress
2019
Iftikhar, Azka | Ali, Shafaqat | Yasmeen, Tahira | Arif, Muhammad Saleem | Zubair, Muhammad | Rizwan, Muhammad | Alhaithloul, Haifa Abdulaziz S. | Alayafi, Aisha A.M. | Soliman, Mona H.
The production and soil accumulation of nanoparticles (NPs) from the industrial sector has increased concerns about their toxic effects in plants which needs the research to explore the ways of reducing NPs toxicity in pants. The gibberellic acid (GA) has been found to reduce abiotic stresses in plants. However, the effect of GA in reducing zinc oxide (ZnO) NPs-mediated toxicity in plants remains unclear. In this study, foliar application of GA was used to explore the possible role in reducing ZnO NPs toxicity in wheat (Triticum aestivum L.) plants. The plants were grown in pots spiked with ZnO NPs (0, 300, 600, 900, 1200 mg/kg) and GA (0, 100, 200 mg/L) was foliar sprayed at different times during the growth period under ambient environmental conditions. Our results demonstrated that GA inhibited the toxicity of ZnO NPs in wheat especially at higher levels of NPs. The GA application improved the plant biomass, photosynthesis, nutrients, and yield under ZnO NPs stress. The GA reduced the Zn accumulation, and reactive oxygen species generation in plants caused by toxicity of NPs. The protective effect of GA in decreasing ZnO NPs-induced oxidative stress was related to GA-mediated enhancement in antioxidant enzymes in plants. The role of GA in enhancing tolerance of wheat against ZnO NPs was further confirmed by the enhancement in nutrient contents in shoots and roots of wheat. Overall, our study provides the evidence that GA can reduce ZnO NPs-induced toxicity in wheat and probably in other crops which needs further in-depth investigation.
Mostrar más [+] Menos [-]Hydrogen gas alleviates toxic effects of cadmium in Brassica campestris seedlings through up-regulation of the antioxidant capacities: Possible involvement of nitric oxide
2019
Su, Nana | Wu, Qi | Chen, Hui | Huang, Yifan | Zhu, Zhengbo | Chen, Yahua | Cui, Jin
Hydrogen gas (H₂) has been shown as an important factor in plant tolerance to abiotic stresses, but the underlying mechanisms remain unclear. In the present study, the effects of H₂ and its interaction with nitric oxide (NO) on alleviating cadmium (Cd) stress in Brassica campestris seedlings were investigated. NO donor (SNP) or hydrogen-rich water (HRW) treatment showed a significant improvement in growth of Cd-stressed seedlings. Cd treatment upregulated both endogenous NO and H₂ (36% and 66%, respectively), and the increase of H₂ was prior to NO increase. When treated with NO scavenger (PTIO) or NO biosynthesis enzyme inhibitors (L-NAME and Gln), HRW-induced alleviation under Cd stress was prevented. Under Cd stress, HRW pretreatment significantly enhanced the NO accumulation, and together up-regulated the activity of NR (nitrate reductase) and expression of NR. HRW induced lower reactive oxygen species (ROS), higher AsA content, enhanced activity of POD (peroxidase) and SOD (superoxide dismutase) in seedling roots were inhibited by PTIO, L-NAME and Gln. Through proteomic analysis, the level of 29 proteins were changed in response to H₂ and NO-induced amelioration of Cd stress. Nearly half of them were involved in oxidation-reduction processes (about 20%) or antioxidant enzymes (approximately 20%). These results strongly indicate that in Cd-stressed seedlings, pretreatment with HRW induces the accumulation of H₂ (biosynthesized or permeated), which further stimulates the biosynthesis of NO through the NR pathway. Finally, H₂ and NO together enhance the antioxidant capabilities of seedlings in response to Cd toxicity.
Mostrar más [+] Menos [-]The effects of organophosphorus insecticides and heavy metals on DNA damage and programmed cell death in two plant models
2018
Cortés-Eslava, Josefina | Gómez-Arroyo, Sandra | Risueño, Maria C. | Testillano, Pilar S.
The ubiquity of pollutants, such as agrochemicals and heavy metals, constitute a serious risk to human health. To evaluate the induction of DNA damage and programmed cell death (PCD), root cells of Allium cepa and Vicia faba were treated with two organophosphate insecticides (OI), fenthion and malathion, and with two heavy metal (HM) salts, nickel nitrate and potassium dichromate. An alkaline variant of the comet assay was performed to identify DNA breaks; the results showed comets in a dose-dependent manner, while higher concentrations induced clouds following exposure to OIs and HMs. Similarly, treatments with higher concentrations of OIs and HMs were analyzed by immunocytochemistry, and several structural characteristics of PCD were observed, including chromatin condensation, cytoplasmic vacuolization, nuclear shrinkage, condensation of the protoplast away from the cell wall, and nuclei fragmentation with apoptotic-like corpse formation. Abiotic stress also caused other features associated with PCD, such as an increase of active caspase-3-like protein, changes in the location of cytochrome C (Cyt C) toward the cytoplasm, and decreases in extracellular signal-regulated protein kinase (ERK) expression. Genotoxicity results setting out an oxidative via of DNA damage and evidence the role of the high affinity of HM and OI by DNA molecule as underlying cause of genotoxic effect. The PCD features observed in root cells of A. cepa and V. faba suggest that PCD takes place through a process that involves ERK inactivation, culminating in Cyt C release and caspase-3-like activation. The sensitivity of both plant models to abiotic stress was clearly demonstrated, validating their role as good biosensors of DNA breakage and PCD induced by environmental stressors.
Mostrar más [+] Menos [-]Arsenic tolerant Trichoderma sp. reduces arsenic induced stress in chickpea (Cicer arietinum)
2016
Tripāṭhī, Pratibhā | Singh, Poonam C. | Mishra, Aradhana | Srivastava, Suchi | Chauhan, Reshu | Awasthi, Surabhi | Miśrā, Sīmā | Dwivedi, Sanjay | Kupur, Preeti T. | Kalra, Alok | Tripathi, R. D. (Rudra D.) | Nautiyal, Chandra S.
Toxic metalloids including arsenic (As) can neither be eliminated nor destroyed from environment; however, they can be converted from toxic to less/non-toxic forms. The form of As species and their concentration determines its toxicity in plants. Therefore, the microbe mediated biotransformation of As is crucial for its plant uptake and toxicity. In the present study the role of As tolerant Trichoderma in modulating As toxicity in chickpea plants was explored. Chickpea plants grown in arsenate spiked soil under green house conditions were inoculated with two plant growth promoting Trichoderma strains, M-35 (As tolerant) and PPLF-28 (As sensitive). Total As concentration in chickpea tissue was comparable in both the Trichoderma treatments, however, differences in levels of organic and inorganic As (iAs) species were observed. The shift in iAs to organic As species ratio in tolerant Trichoderma treatment correlated with enhanced plant growth and nutrient content. Arsenic stress amelioration in tolerant Trichoderma treatment was also evident through rhizospheric microbial community and anatomical studies of the stem morphology. Down regulation of abiotic stress responsive genes (MIPS, PGIP, CGG) in tolerant Trichoderma + As treatment as compared to As alone and sensitive Trichoderma + As treatment also revealed that tolerant strain enhanced the plant's potential to cope with As stress as compared to sensitive one. Considering the bioremediation and plant growth promotion potential, the tolerant Trichoderma may appear promising for its utilization in As affected fields for enhancing agricultural productivity.
Mostrar más [+] Menos [-]Population responses of Daphnia magna, Chydorus sphaericus and Asellus aquaticus in pesticide contaminated ditches around bulb fields
2014
Ieromina, O. | Peijnenburg, W.J.G.M. | de Snoo, G.R. | Vijver, M.G.
The goal of this study was to investigate the effects of ambient concentrations of pesticides combined with abiotic factors on the key aquatic species Daphnia magna, Chydorus sphaericus and Asellus aquaticus by means of 21 days field exposure experiments. In situ bioassays were deployed in ditches around flower bulb fields during spring and autumn 2011–2012. The results showed that phosphate was the most variable parameter followed by pesticides expressed as toxic units, as the main factors explaining differences between sites. Variation in reproduction and growth of cladoceran D. magna was largely explained by nutrients, whereas dissolved oxygen contributed mostly to variations in reproduction of C. sphaericus. Dissolved organic carbon contributed to variations in growth of the detrivore A. aquaticus. It is concluded that abiotic stressors rather than pesticides contributed significantly to the performance of aquatic invertebrates.
Mostrar más [+] Menos [-]Hydrogen sulfide manages hexavalent chromium toxicity in wheat and rice seedlings: The role of sulfur assimilation and ascorbate-glutathione cycle
2022
Singh, Sani kumar | Suhel, Mohammad | Tajammul Ḥusain, | Prasad, Sheo Mohan | Singh, Vijay Pratap
The role of hydrogen sulfide (H₂S) is well known in the regulation of abiotic stress such as toxic heavy metal. However, mechanism(s) lying behind this amelioration are still poorly known. Consequently, the present study was focused on the regulation/mitigation of hexavalent chromium (Cr(VI) toxicity by the application of H₂S in wheat and rice seedlings. Cr(VI) induced accumulation of reactive oxygen species and caused protein oxidation which negatively affect the plant growth in both the cereal crops. We noticed that Cr(VI) toxicity reduced length of wheat and rice seedlings by 21% and 19%, respectively. These reductions in length of both the cereal crops were positively related with the down-regulation in the ascorbate-glutathione cycle, and were recovered by the application NaHS (a donor of H₂S). Though exposure of Cr(VI) slightly stimulated sulfur assimilation but addition of H₂S further caused enhancement in sulfur assimilation, suggesting its role in the H₂S-mediated Cr(VI) stress tolerance in studied cereal crops. Overall, the results revealed that H₂S renders Cr(VI) stress tolerance in wheat and rice seedlings by stimulating sulfur assimilation and ascorbate-glutathione which collectively reduce protein oxidation and thus, improved growth was observed.
Mostrar más [+] Menos [-]Silicon nanoparticles in higher plants: Uptake, action, stress tolerance, and crosstalk with phytohormones, antioxidants, and other signalling molecules
2022
Mukarram, Mohammad | Petrik, Peter | Mushtaq, Zeenat | Khan, M. Masroor A. | Gulfishan, Mohd | Lux, Alexander
Silicon is absorbed as uncharged mono-silicic acid by plant roots through passive absorption of Lsi1, an influx transporter belonging to the aquaporin protein family. Lsi2 then actively effluxes silicon from root cells towards the xylem from where it is exported by Lsi6 for silicon distribution and accumulation to other parts. Recently, it was proposed that silicon nanoparticles (SiNPs) might share a similar route for their uptake and transport. SiNPs then initiate a cascade of morphophysiological adjustments that improve the plant physiology through regulating the expression of many photosynthetic genes and proteins along with photosystem I (PSI) and PSII assemblies. Subsequent improvement in photosynthetic performance and stomatal behaviour correspond to higher growth, development, and productivity. On many occasions, SiNPs have demonstrated a protective role during stressful environments by improving plant-water status, source-sink potential, reactive oxygen species (ROS) metabolism, and enzymatic profile. The present review comprehensively discusses the crop improvement potential of SiNPs stretching their role during optimal and abiotic stress conditions including salinity, drought, temperature, heavy metals, and ultraviolet (UV) radiation. Moreover, in the later section of this review, we offered the understanding that most of these upgrades can be explained by SiNPs intricate correspondence with phytohormones, antioxidants, and signalling molecules. SiNPs can modulate the endogenous phytohormones level such as abscisic acid (ABA), auxins (IAAs), cytokinins (CKs), ethylene (ET), gibberellins (GAs), and jasmonic acid (JA). Altered phytohormones level affects plant growth, development, and productivity at various organ and tissue levels. Similarly, SiNPs regulate the activities of catalase (CAT), ascorbate peroxidase (APX), superoxide dismutase (SOD), and ascorbate-glutathione (AsA-GSH) cycle leading to an upgraded defence system. At the cellular and subcellular levels, SiNPs crosstalk with various signalling molecules such as Ca²⁺, K⁺, Na⁺, nitric oxide (NO), ROS, soluble sugars, and transcription factors (TFs) was also explained.
Mostrar más [+] Menos [-]Implication of nitric oxide and hydrogen sulfide signalling in alleviating arsenate stress in rice seedlings
2021
Mishra, Vipul | Singh, Vijay Pratap
Nitric oxide (NO) and hydrogen sulfide (H₂S) since their discovery have proven to be game changing molecules in alleviating abiotic stress. They individually play role in plant stress management while the pathways of stress regulation through their crosstalk remain elusive. The current study focuses on investigating the interplay of NO and H₂S signalling in the amelioration of arsenate As(V) toxicity in rice seedlings and managing its growth, photosynthesis, sucrose and proline metabolism. Results show that As(V) exposure declined fresh weight (biomass) due to induced cell death in root tips. Moreover, a diminished RuBisCO activity, decline in starch content with high proline dehydrogenase activity and increased total soluble sugars content was observed which further intensified in the presence of Nω-nitro-L-arginine methyl ester hydrochloride (L-NAME, an inhibitor of nitric oxide synthase-like activity), and DL-propargylglycine (PAG, an inhibitor of cysteine desulfhydrase activity). These results correlate with lower endogenous level of NO and H₂S. Addition of L-NAME increased As(V) toxicity. Interestingly, addition of SNP reverses effect of L-NAME suggesting that endogenous NO has a role in mitigating As(V) toxicity. Similarly, exogenous H₂S also significantly alleviated As(V) stress, while PAG further stimulated As(V) toxicity. Furthermore, application of H₂S in the presence of L – NAME and NO in the presence of PAG could still mitigate As(V) toxicity, suggesting that endogenous NO and H₂S could independently mitigate As(V) stress.
Mostrar más [+] Menos [-]Irrigation of radish (Raphanus sativus L.) with microcystin-enriched water holds low risk for plants and their associated rhizopheric and epiphytic microbiome
2020
Petrou, M. | Karas, P.A. | Vasileiadis, S. | Zafiriadis, I. | Papadimitriou, T. | Levizou, E. | Kormas, K. | Karpouzas, D.G.
Microcystins (MCs) are toxins produced during cyanobacterial blooms. They reach soil and translocated to plants through irrigation of agricultural land with water from MC-impacted freshwater systems. To date we have good understanding of MC effects on plants, but not for their effects on plant-associated microbiota. We tested the hypothesis that MC-LR, either alone or with other stressors present in the water of the Karla reservoir (a low ecological quality and MC-impacted freshwater system), would affect radish plants and their rhizospheric and phyllospheric microbiome. In this context a pot experiment was employed where radish plants were irrigated with tap water without MC-LR (control) or with 2 or 12 μg L⁻¹ of pure MC-LR (MC2 and MC12), or water from the Karla reservoir amended (12 μg L⁻¹) or not with MC-LR. We measured MC levels in plants and rhizospheric soil and we determined effects on (i) plant growth and physiology (ii) the nitrifying microorganisms via q-PCR, (ii) the diversity of bacterial and fungal rhizospheric and epiphytic communities via amplicon sequencing. MC-LR and/or Karla water treatments resulted in the accumulation of MC in taproot at levels (480–700 ng g⁻¹) entailing possible health risks. MC did not affect plant growth or physiology and it did not impose a consistent inhibitory effect on soil nitrifiers. Karla water rather than MC-LR was the stronger determinant of the rhizospheric and epiphytic microbial communities, suggesting the presence of biotic or abiotic stressors, other than MC-LR, in the water of the Karla reservoir which affect microorganisms with a potential role (i.e. pathogens inhibition, methylotrophy) in the homeostasis of the plant-soil system. Overall, our findings suggest that MC-LR, when applied at environmentally relevant concentrations, is not expected to adversely affect the radish-microbiota system but might still pose risk for consumers’ health.
Mostrar más [+] Menos [-]