Refinar búsqueda
Resultados 1-10 de 40
Ameliorative effects of plant growth promoting bacteria, zinc oxide nanoparticles and oxalic acid on Luffa acutangula grown on arsenic enriched soil Texto completo
2022
Tanveer, Yashfa | Yasmin, Humaira | Nosheen, Asia | Ali, Sajad | Ahmad, Ajaz
Arsenic (As) contamination and bioaccumulation are a serious threat to agricultural plants. To address this issue, we checked the efficacy of As tolerant plant growth promoting bacteria (PGPB), zinc oxide nanoparticles (ZnO NPs) and oxalic acid (OA) in Luffa acutangula grown on As rich soil. The selected most As tolerant PGPB i.e Providencia vermicola exhibited plant growth promoting features i.e solubilzation of phosphate, potassium and siderophores production. Innovatively, we observed the synergistic effects of P. vermicola, ZnO NPs (10 ppm) and OA (100 ppm) in L. acutangula grown on As enriched soil (150 ppm). Our treatments both as alone and in combination alleviated As toxicity exhibited by better plant growth and metabolism. Results revealed significantly enhanced photosynthetic pigments, proline, relative water content, total sugars, proteins and indole acetic acid along with As amelioration in L. acutangula. Furthermore, upregulated plant resistance was manifested with marked reduction in the lipid peroxidation and electrolyte leakage and pronounced antagonism of As and zinc content in leaves under toxic conditions. These treatments also improved level of nutrients, abscisic acid and antioxidants to mitigate As toxicity. This marked improvement in plants’ defense mechanism of treated plants under As stress is confirmed by less damaged leaves cell structures observed through the scanning electron micrographs. We also found substantial decrease in the As bioaccumulation in the L. acutangula shoots and roots by 40 and 58% respectively under the co-application of P. vermicola, ZnO NPs and OA in comparison with control. Moreover, the better activity of soil phosphatase and invertase was assessed under the effect of our application. These results cast a new light on the application of P. vermicola, ZnO NPs and OA in both separate and combined form as a feasible and ecofriendly tool to alleviate As stress in L. acutangula.
Mostrar más [+] Menos [-]Copper stress in grapevine: Consequences, responses, and a novel mitigation strategy using 5-aminolevulinic acid Texto completo
2022
Yang, Yuxian | Fang, Xiang | Chen, Mengxia | Wang, Lingyu | Xia, Jiaxin | Wang, Zicheng | Fang, Jinggui | Tran, Lam-son Phan | Shangguan, Lingfei
Improper application of copper-based fungicides has made copper stress critical in viticulture, necessitating the need to identify substances that can mitigate it. In this study, leaves of ‘Shine Muscat’ (‘SM’) grapevine seedlings were treated with CuSO₄ solution (10 mM/L), CuSO₄ + 5-aminolevulinic acid (ALA) (50 mg/L), and distilled water to explore the mitigation effect of ALA. Physiological assays demonstrated that ALA effectively reduced malondialdehyde accumulation and increased peroxidase and superoxide dismutase activities in grapevine leaves under copper stress. Copper ion absorption, transport pathways, chlorophyll metabolism pathways, photosynthetic system, and antioxidant pathways play key roles in ALA alleviated-copper stress. Moreover, expression changes in genes, such as CHLH, ALAD, RCA, and DHAR, play vital roles in these processes. Furthermore, abscisic acid reduction caused by NCED down-regulation and decreased naringenin, leucopelargonidin, and betaine contents confirmed the alleviating effect of ALA. Taken together, these results reveal how grapevine responds to copper stress and the alleviating effects of ALA, thus providing a novel means of alleviating copper stress in viticulture.
Mostrar más [+] Menos [-]Roles of exogenous plant growth regulators on phytoextraction of Cd/Pb/Zn by Sedum alfredii Hance in contaminated soils Texto completo
2022
Chen, Zhiqin | Liu, Qizhen | Chen, Shaoning | Zhang, Shijun | Wang, Mei | Mujtaba Munir, Mehr Ahmed | Feng, Ying | He, Zhenli | Yang, Xiaoe
Plant growth regulators (PGRs) assisted phytoextraction was investigated as a viable phytoremediation technology to increase the phytoextraction efficiency in contaminated soils. This study aimed to evaluate the cadimum (Cd)/lead (Pb)/zinc (Zn) phytoextraction efficiency by a hyperaccumulator Sedum alfredii Hance (S. alfredii) treated with 9 PGRs, including indole-3-acetic acid (IAA), gibberellin (GA₃), cytokinin (CKs), abscisic acid (ABA), ethylene (ETH), brassinosteroid (BR), salicylic acid (SA), strigolactones (SL) and jasmonic acid (JA), in slightly or heavily contaminated (SC and HC, respectively) soil. Results demonstrated that PGRs were able to improve S. alfredii biomass, the most significant increases were observed in GA₃ and SL for HC soil, while for SC soil, IAA and BR exhibited positive effects. The levels of Cd, Pb and Zn in the shoots of S. alfredii treated with ABA and SL were noticeably greater than in the CK treatment in HC soil, while the uptake of metals were increased by IAA and CKs in SC soil. Combined with the results of biomass and metal contents in shoots, we found that ABA showed the highest Cd removal efficiency and the maximum Pb and Zn removal efficiency was observed with GA₃, which was 62.99%, 269.23%, and 41.18%, respectively higher than the control in HC soil. Meanwhile, compared to control, the maximum removal efficiency of Cd by IAA treatment (52.80%), Pb by JA treatment (165.1%), and Zn by BR treatment (44.97%) in the SC soil. Overall, our results suggested that these PGRs, especially, ABA, SL, IAA, BR and GA₃ had great potential in improving phytoremediation efficiency of S. alfredii grown in contaminated soils.
Mostrar más [+] Menos [-]Abscisic acid priming regulates arsenite toxicity in two contrasting rice (Oryza sativa L.) genotypes through differential functioning of sub1A quantitative trait loci Texto completo
2021
Saha, Indraneel | Hasanuzzaman, Mirza | Adak, Malay Kumar
Arsenite [As(III)] toxicity causes impeded growth, inadequate productivity of plants and toxicity through the food chain. Using various chemical residues for priming is one of the approaches in conferring arsenic tolerance in crops. We investigated the mechanism of abscisic acid (ABA)-induced As(III) tolerance in rice genotypes (cv. Swarna and Swarna Sub1) pretreated with 10 μM of ABA for 24 h and transferred into 0, 25 and 50 μM arsenic for 10 days. Plants showed a dose-dependent bioaccumulation of As(III), oxidative stress indicators like superoxide, hydrogen peroxide, thiobarbituric acid reactive substances and the activity of lipoxygenase. As(III) had disrupted cellular redox that reflecting growth indices like net assimilation rate, relative growth rate, specific leaf weight, leaf mass ratio, relative water content, proline, delta-1-pyrroline-5-carboxylate synthetase and electrolyte leakage. ABA priming was more protective in cv. Swarna Sub1 than Swarna for retrieval of total glutathione pool, non-protein thiols, cysteine, phytochelatin and glutathione reductase. Phosphate metabolisms were significantly curtailed irrespective of genotypes where ABA had moderated phosphate uptake and its metabolizing enzymes like acid phosphatase, alkaline phosphatase and H⁺/ATPase. Rice seedlings had regulated antioxidative potential with the varied polymorphic expression of those enzymes markedly with antioxidative enzymes. The results have given the possible cellular and physiological traits those may interact with ABA priming in the establishment of plant tolerance with As(III) over accumulation and, thereby, its amelioration for oxidative damages. Finally, cv. Swarna Sub1 was identified as a rice genotype as a candidate for breeding program for sustainability against As(III) stress with cellular and physiological traits serving better for selection pressure.
Mostrar más [+] Menos [-]Stomata facilitate foliar sorption of silver nanoparticles by Arabidopsis thaliana Texto completo
2022
He, Jianzhou | Zhang, Li | He, Sheng Yang | Ryser, Elliot T. | Li, Hui | Zhang, Wei
Application of nanopesticides may substantially increase surface attachment and internalization of engineered nanoparticles (ENPs) in food crops. This study investigated the role of stomata in the internalization of silver nanoparticles (Ag NPs) using abscisic acid (ABA)-responsive ecotypes (Ler and Col-7) and ABA-insensitive mutants (ost1-2 and scord7) of Arabidopsis thaliana in batch sorption experiments, in combination with microscopic visualization. Compared with those of the ABA-free control, stomatal apertures were significantly smaller for the Ler and Col-7 ecotypes (p ˂ 0.05) but remained unchanged for the ost1-2 and scord7 mutants, after exposure to 10 μM ABA for 1 h. Generally Ag NP sorption to the leaves of the Ler and Col-7 ecotypes treated with 10 μM ABA was lower than that in the ABA-free control, mainly due to ABA-induced stomatal closure. The difference in Ag NP sorption with and without ABA was less pronounced for Col-7 than for Ler, suggesting different sorption behaviors between these two ecotypes. In contrast, there was no significant difference in foliar sorption of Ag NPs by the ost1-2 and scord7 mutants with and without ABA treatment. Ag NPs were widely attached to the Arabidopsis leaf surface, and found at cell membrane, cytoplasm, and plasmodesmata, as revealed by scanning electron microscopy and transmission electron microscopy, respectively. These results highlight the important role of stomata in the internationalization of ENPs in plants and may have broad implications in foliar application of nanopesticides and minimizing contamination of food crops by ENPs.
Mostrar más [+] Menos [-]Silicon nanoparticles in higher plants: Uptake, action, stress tolerance, and crosstalk with phytohormones, antioxidants, and other signalling molecules Texto completo
2022
Mukarram, Mohammad | Petrik, Peter | Mushtaq, Zeenat | Khan, M. Masroor A. | Gulfishan, Mohd | Lux, Alexander
Silicon is absorbed as uncharged mono-silicic acid by plant roots through passive absorption of Lsi1, an influx transporter belonging to the aquaporin protein family. Lsi2 then actively effluxes silicon from root cells towards the xylem from where it is exported by Lsi6 for silicon distribution and accumulation to other parts. Recently, it was proposed that silicon nanoparticles (SiNPs) might share a similar route for their uptake and transport. SiNPs then initiate a cascade of morphophysiological adjustments that improve the plant physiology through regulating the expression of many photosynthetic genes and proteins along with photosystem I (PSI) and PSII assemblies. Subsequent improvement in photosynthetic performance and stomatal behaviour correspond to higher growth, development, and productivity. On many occasions, SiNPs have demonstrated a protective role during stressful environments by improving plant-water status, source-sink potential, reactive oxygen species (ROS) metabolism, and enzymatic profile. The present review comprehensively discusses the crop improvement potential of SiNPs stretching their role during optimal and abiotic stress conditions including salinity, drought, temperature, heavy metals, and ultraviolet (UV) radiation. Moreover, in the later section of this review, we offered the understanding that most of these upgrades can be explained by SiNPs intricate correspondence with phytohormones, antioxidants, and signalling molecules. SiNPs can modulate the endogenous phytohormones level such as abscisic acid (ABA), auxins (IAAs), cytokinins (CKs), ethylene (ET), gibberellins (GAs), and jasmonic acid (JA). Altered phytohormones level affects plant growth, development, and productivity at various organ and tissue levels. Similarly, SiNPs regulate the activities of catalase (CAT), ascorbate peroxidase (APX), superoxide dismutase (SOD), and ascorbate-glutathione (AsA-GSH) cycle leading to an upgraded defence system. At the cellular and subcellular levels, SiNPs crosstalk with various signalling molecules such as Ca²⁺, K⁺, Na⁺, nitric oxide (NO), ROS, soluble sugars, and transcription factors (TFs) was also explained.
Mostrar más [+] Menos [-]Inoculation with abscisic acid (ABA)-catabolizing bacteria can improve phytoextraction of heavy metal in contaminated soil Texto completo
2020
Lu, Qi | Weng, Yineng | You, Yue | Xu, Qianru | Li, Haiyue | Li, Yuan | Liu, Huijun | Du, Shaoting
Promotion of plant capacity for accumulation of heavy metals (HMs) is one of the key strategies in enhancing phytoremediation in contaminated soils. Here we report that, Rhodococcus qingshengii, an abscisic acid (ABA)-catabolizing bacteria, clearly boosts levels of Cd, Zn, and Ni in wild-type Arabidopsis by 47, 24, and 30%, respectively, but no increase in Cu was noted, when compared with non-inoculated Arabidopsis plants in contaminated growth substrate. Furthermore, when compared with wild-type plants, R.qingshengii-induced increases in Cd, Zn, and Ni concentrations were more pronounced in abi1/hab1/abi2 (ABA-sensitive mutant) strains of Arabidopsis, whereas little effect was observed in snrk2.2/2.3 (ABA insensitive mutant). This demonstrates that metabolizing ABA might be indispensable for R. qingshengii to improve metal accumulation in plants. Bacterial inoculation significantly elevated the expression of Cd, Zn, and Ni-related transporters; whereas the transcript levels of Cu transporters remained unchanged. This result may be a reasonable explanation for why the uptake of Cd, Zn, and Ni in plants was stimulated by bacterial inoculation, while no effect was observed on Cu levels. From our results, we clearly demonstrate that R. qingshengii can increase the accumulation of Cd, Zn, and Ni in plants via an ABA-mediated HM transporters-associated mechanism. Metabolizing ABA in the plants by ABA-catabolizing bacterial inoculation might be an alternative strategy to improve phytoremediation efficiency in HMs contaminated soil.
Mostrar más [+] Menos [-]De novo RNA-Seq analysis in sensitive rice cultivar and comparative transcript profiling in contrasting genotypes reveal genetic biomarkers for fluoride-stress response Texto completo
2020
Banerjee, Aditya | Singh, Ankur | Roychoudhury, Aryadeep
The fluoride-sensitive indica rice cultivar, IR-64 was subjected to NaF-treatment for 25 days, following which RNA-Seq analysis identified significant up and down regulation of 1,303 and 93 transcripts respectively. Gene ontology (GO) enrichment analysis classified transcripts into groups related to ‘cellular part’, ‘membrane’, ‘catalytic activity’, ‘transporter activity’, ‘binding’, ‘metabolic processes’ and ‘cellular processes’. Analysis of differentially expressed genes (DEGs) revealed fluoride-mediated suppression of abscisic acid (ABA) biosynthesis and signaling. Instead, the gibberellin-dependent pathway and signaling via ABA-independent transcription factors (TFs) was activated. Comparative profiling of selected DEGs in IR-64 and fluoride-tolerant variety, Khitish revealed significant cytoskeletal and nucleosomal remodelling, accompanied with escalated levels of autophagy in stressed IR-64 (unlike that in stressed Khitish). Genes associated with ion, solute and xenobiotic transport were strongly up regulated in stressed IR-64, indicating potential fluoride entry through these channels. On the contrary, genes associated with xenobiotic mobility were suppressed in the tolerant cultivar, which restricted bioaccumulation and translocation of fluoride. Pairwise expression profile analysis between stressed IR-64 and Khitish, supported by extensive statistical modelling predicted that fluoride susceptibility was associated with high expression of genes like amino acid transporter, ABC transporter2, CLCd, MFS monosaccharide transporter, SulfT2.1 and PotT2 while fluoride tolerance with high expression of Sweet11.
Mostrar más [+] Menos [-]Alleviation of the effect of salinity on growth and yield of strawberry by foliar spray of selenium-nanoparticles Texto completo
2019
Zahedi, Seyed Morteza | Abdelrahman, Mostafa | Hosseini, Marjan Sadat | Hoveizeh, Narjes Fahadi | Tran, Lam-son Phan
The present study investigated the beneficial role of selenium-nanoparticles (Se-NPs) in mitigating the adverse effects of soil-salinity on growth and yield of strawberry (Fragaria × ananassa Duch.) plants by maneuvering physiological and biochemical mechanisms. The foliar spray of Se-NPs (10 and 20 mg L⁻¹) improved the growth and yield parameters of strawberry plants grown on non-saline and different saline soils (0, 25, 50 and 75 mM NaCl), which was attributed to their ability to protect photosynthetic pigments. Se-NPs-treated strawberry plants exhibited higher levels of key osmolytes, including total soluble carbohydrates and free proline, compared with untreated plants under saline conditions. Foliar application of Se-NPs improved salinity tolerance in strawberry by reducing stress-induced lipid peroxidation and H₂O₂ content through enhancing activities of antioxidant enzymes like superoxide dismutase and peroxidase. Additionally, Se-NPs-treated strawberry plants showed accumulation of indole-3-acetic acid and abscisic acid, the vital stress signaling molecules, which are involved in regulating different morphological, physiological and molecular responses of plants to salinity. Moreover, the enhanced levels of organic acids (e.g., malic, citric and succinic acids) and sugars (e.g., glucose, fructose and sucrose) in the fruits of Se-NPs-treated strawberry plants under saline conditions indicated the positive impacts of Se-NPs on the improvement of fruit quality and nutritional values. Our results collectively demonstrate the definite roles of Se-NPs in management of soil salinity-induced adverse effects on not only strawberry plants but also other crops.
Mostrar más [+] Menos [-]Maize roots and shoots show distinct profiles of oxidative stress and antioxidant defense under heavy metal toxicity Texto completo
2020
AbdElgawad, Hamada | Zinta, Gaurav | Hamed, Badreldin A. | Selim, Samy | Beemster, Gerrit | Hozzein, Wael N. | Wadaan, Mohammed A.M. | Asard, Han | Abuelsoud, Walid
Heavy metal accumulation in agricultural land causes crop production losses worldwide. Metal homeostasis within cells is tightly regulated. However, homeostasis breakdown leads to accumulation of reactive oxygen species (ROS). Overall plant fitness under stressful environment is determined by coordination between roots and shoots. But little is known about organ specific responses to heavy metals, whether it depends on the metal category (redox or non-redox reactive) and if these responses are associated with heavy metal accumulation in each organ or there are driven by other signals. Maize seedlings were subjected to sub-lethal concentrations of four metals (Zn, Ni, Cd and Cu) individually, and were quantified for growth, ABA level, and redox alterations in roots, mature leaves (L1,2) and young leaves (L3,4) at 14 and 21 days after sowing (DAS). The treatments caused significant increase in endogenous metal levels in all organs but to different degrees, where roots showed the highest levels. Biomass was significantly reduced under heavy metal stress. Although old leaves accumulated less heavy metal content than root, the reduction in their biomass (FW) was more pronounced. Metal exposure triggered ABA accumulation and stomatal closure mainly in older leaves, which consequently reduced photosynthesis. Heavy metals induced oxidative stress in the maize organs, but to different degrees. Tocopherols, polyphenols and flavonoids increased specifically in the shoot under Zn, Ni and Cu, while under Cd treatment they played a minor role. Under Cu and Cd stress, superoxide dismutase (SOD) and dehydroascorbate reductase (DHAR) activities were induced in the roots, however ascorbate peroxidase (APX) activity was only increased in the older leaves. Overall, it can be concluded that root and shoot organs specific responses to heavy metal toxicity are not only associated with heavy metal accumulation and they are specialized at the level of antioxidants to cope with.
Mostrar más [+] Menos [-]