Refinar búsqueda
Resultados 1-10 de 126
Modulation of osmoprotection and antioxidant defense by exogenously applied acetate enhances cadmium stress tolerance in lentil seedlings Texto completo
2022
Shahadat Hossain, Md. | Abdelrahman, Mostafa | Tran, Cuong Duy | Nguyen, Kien Huu | Chu, Ha Duc | Watanabe, Yasuko | Fujita, Masayuki | Tran, Lam-son Phan
To examine the potential role of acetate in conferring cadmium (Cd) stress tolerance in lentil (Lens culinaris), several phenotypical and physio-biochemical properties have been examined in Cd-stressed lentil seedlings following acetate applications. Acetate treatment inhibited the translocation of Cd from roots to shoots, which resulted in a minimal reduction in photosynthetic pigment contents. Additionally, acetate-treated lentil showed higher shoot (1.1 and 11.72%) and root (4.98 and 30.64%) dry weights compared with acetate-non-treated plants under low-Cd and high-Cd concentrations, respectively. Concurrently, acetate treatments increase osmoprotection under low-Cd stress through proline accumulation (24.69%), as well as enhancement of antioxidant defense by increasing ascorbic acid content (239.13%) and catalase activity (148.51%) under high-Cd stress. Acetate-induced antioxidant defense resulted in a significant diminution in hydrogen peroxide, malondialdehyde and electrolyte leakage in Cd-stressed lentil seedlings. Our results indicated that acetate application mitigated oxidative stress-induced damage by modulating antioxidant defense and osmoprotection, and reducing root-to-shoot Cd transport. These findings indicate an important contribution of acetate in mitigating the Cd toxicity during growth and development of lentil seedlings, and suggest that the exogenous applications of acetate could be an economical and new avenue for controlling heavy metal-caused damage in lentil, and potentially in many other crops.
Mostrar más [+] Menos [-]Developmental toxicity in zebrafish (Danio rerio) exposed to uranium: A comparison with lead, cadmium, and iron Texto completo
2021
Shankar, Prarthana | Dashner-Titus, Erica J. | Truong, Lisa | Hayward, Kimberly | Hudson, Laurie G. | Tanguay, Robyn L.
Populations of plants and animals, including humans, living in close proximity to abandoned uranium mine sites are vulnerable to uranium exposure through drainage into nearby waterways, soil accumulation, and blowing dust from surface soils. Little is known about how the environmental impact of uranium exposure alters the health of human populations in proximity to mine sites, so we used developmental zebrafish (Danio rerio) to investigate uranium toxicity. Fish are a sensitive target for modeling uranium toxicity, and previous studies report altered reproductive capacity, enhanced DNA damage, and gene expression changes in fish exposed to uranium. In our study, dechorionated zebrafish embryos were exposed to a concentration range of uranyl acetate (UA) from 0 to 3000 μg/L for body burden measurements and developmental toxicity assessments. Uranium was taken up in a concentration-dependent manner by 48 and 120 h post fertilization (hpf)-zebrafish without evidence of bioaccumulation. Exposure to UA was not associated with teratogenic outcomes or 24 hpf behavioral effects, but larvae at 120 hpf exhibited a significant hypoactive photomotor response associated with exposure to 3 μg/L UA which suggested potential neurotoxicity. To our knowledge, this is the first time that uranium has been associated with behavioral effects in an aquatic organism. These results were compared to potential metal co-contaminants using the same exposure paradigm. Similar to uranium exposure, lead, cadmium, and iron significantly altered neurobehavioral outcomes in 120-hpf zebrafish without inducing significant teratogenicity. Our study informs concerns about the potential impacts of developmental exposure to uranium on childhood neurobehavioral outcomes. This work also sets the stage for future, environmentally relevant metal mixture studies. Summary Uranium exposure to developing zebrafish causes hypoactive larval swimming behavior similar to the effect of other commonly occurring metals in uranium mine sites. This is the first time that uranium exposure has been associated with altered neurobehavioral effects in any aquatic organism.
Mostrar más [+] Menos [-]Biomethanation and microbial community response during agricultural biomass and shrimp chaff digestion Texto completo
2021
Gohar, Ali | Ling, Zhenmin | Saif, Irfan | ʻUs̲mān, Muḥammad | Jalalah, Mohammed | Harraz, Farid A. | Al-Assiri, M.S. | Salama, Sayed | Li, Xiangkai
Anaerobic digestion, a promising technology for waste utilization and bioenergy generation, is a suitable approach to convert the shrimp waste to biomethane, reducing its environmental impact. In this study, shrimp chaff (SC) was co-digested corn straw (CS), wheat straw (WS), and sugarcane bagasse (SB). In co-digestion, SC enhanced biomethane production of CS by 8.47-fold, followed by SC + WS (5.67-folds), and SC + SB (3.37-folds). SC addition to agricultural biomass digestion also promoted the volatile solids removal up to 85%. Microbial community analysis of SC and CS co-digestion presented the dominance of phylum Bacteroidetes, Firmicutes, Proteobacteria, and Euryarchaeota. Proteolytic bacteria were dominant (18.02%) during co-digestion of SC and CS, with Proteiniphilum as major bacterial genera (14%) that converts complex proteinaceous substrates to organic acids. Among the archaeal community, Methanosarcina responsible for conversion of acetate and hydrogen to biomethane, increased up to 70.77% in SC and CS digestion. Addition of SC to the digestion of agricultural wastes can significantly improve the biomethane production along with its effective management to reduce environmental risks.
Mostrar más [+] Menos [-]Immunotoxic mechanisms of cigarette smoke and heat-not-burn tobacco vapor on Jurkat T cell functions Texto completo
2021
Scharf, Pablo | da Rocha, Gustavo H.O. | Sandri, Silvana | Heluany, Cintia S. | Pedreira Filho, Walter R. | Farsky, Sandra H.P.
Cigarette smoke (CS) affects immune functions, leading to severe outcomes in smokers. Robust evidence addresses the immunotoxic effects of combustible tobacco products. As heat-not-burn tobacco products (HNBT) vaporize lower levels of combustible products, we here compared the effects of cigarette smoke (CS) and HNBT vapor on Jurkat T cells. Cells were exposed to air, conventional cigarettes or heatsticks of HNBT for 30 min and were stimulated or not with phorbol myristate acetate (PMA). Cell viability, proliferation, reactive oxygen species (ROS) production, 8-OHdG, MAP-kinases and nuclear factor κB (NFκB) activation and metallothionein expression (MTs) were assessed by flow cytometry; nitric oxide (NO) and cytokine levels were measured by Griess reaction and ELISA, respectively. Levels of metals in the exposure chambers were quantified by inductively coupled plasma mass spectrometry. MT expressions were quantified by immunohistochemistry in the lungs and liver of C57Bl/6 mice exposed to CS, HNBT or air (1 h, twice a day for five days: via inhalation). While both CS and HBNT exposures increased cell death, CS led to a higher number of necrotic cells, increased the production of ROS, NO, inflammatory cytokines and MTs when compared to HNBT-exposed cells, and led to a higher expression of MTs in mice. CS released higher amounts of metals. CS and HNBT exposures decreased PMA-induced interleukin-2 (IL-2) secretion and impaired Jurkat proliferation, effects also seen in cells exposed to nicotine. Although HNBT vapor does not activate T cells as CS does, exposure to both HNBT and CS suppressed proliferation and IL-2 release, a pivotal cytokine involved with T cell proliferation and tolerance, and this effect may be related to nicotine content in both products.
Mostrar más [+] Menos [-]Insights into acetate-mediated copper homeostasis and antioxidant defense in lentil under excessive copper stress Texto completo
2020
Shahadat Hossain, Md. | Abdelrahman, Mostafa | Tran, Cuong Duy | Nguyen, Kien Huu | Chu, Ha Duc | Watanabe, Yasuko | Hasanuzzaman, Mirza | Mohsin, Sayed Mohammad | Fujita, Masayuki | Tran, Lam-son Phan
Gradual contamination of agricultural land with copper (Cu), due to the indiscriminate uses of fungicides and pesticides, and the discharge of industrial waste to the environment, poses a high threat for soil degradation and consequently food crop production. In this study, we combined morphological, physiological and biochemical assays to investigate the mechanisms underlying acetate-mediated Cu toxicity tolerance in lentil. Results demonstrated that high dose of Cu (3.0 mM CuSO₄. 5H₂O) reduced seedling growth and chlorophyll content, while augmenting Cu contents in both roots and shoots, and increasing oxidative damage in lentil plants through disruption of the antioxidant defense. Principle component analysis clearly indicated that Cu accumulation and increased oxidative damage were the key factors for Cu toxicity in lentil seedlings. However, acetate pretreatment reduced Cu accumulation in roots and shoots, increased proline content and improved the responses of antioxidant defense (e.g. increased catalase and glutathione-S-transferase activities, and improved action of glutathione-ascorbate metabolic pathway). As a result, excess Cu-induced oxidative damage was reduced, and seedling growth was improved under Cu stress conditions, indicating the role of acetate in alleviating Cu toxicity in lentil seedlings. Taken together, exogenous acetate application reduced Cu accumulation in lentil roots and shoots and mitigated oxidative damage by activating the antioxidant defense, which were the major determinants for alleviating Cu toxicity in lentil seedlings. Our findings provide mechanistic insights into the protective roles of acetate in mitigating Cu toxicity in lentil, and suggest that application of acetate could be a novel and economical strategy for the management of heavy metal toxicity and accumulation in crops.
Mostrar más [+] Menos [-]Contrasting effects of Cr(III) and Cr(VI) on lettuce grown in hydroponics and soil: Chromium and manganese speciation Texto completo
2020
Park, Jin Hee
Chromium (Cr) is a toxic element among which hexavalent chromium [Cr(VI)] is more toxic than trivalent chromium [Cr(III)]. Chromium can be reduced or oxidized in soil because soil is a complex medium and various soil components affect redox reaction of Cr in soil. Therefore, Cr speciation in hydroponics and soil was compared and Cr uptake and speciation by lettuce grown in the media were evaluated. Higher phytotoxicity was found in Cr(III) spiked soil than in Cr(VI) spiked soil, while Cr toxicity was higher in Cr(VI) treated hydroponics than Cr(III) treated hydroponics. Chromium was mainly accumulated in lettuce roots as Cr(III), and more Cr was translocated from roots to shoots grown in Cr(VI) treated hydroponics than Cr(III) treated hydroponics. Accumulation of Cr in roots grown in Cr(III) treated nutrient solution reduced Fe, K, Ca, Mg, and P uptake in lettuce. Chromium valence state was Cr(III) in lettuce leaves and roots grown in both Cr(III) and Cr(VI) treated hydroponics and soil. Chromium speciation in hydroponically grown lettuce roots was Cr(III) coordinated with 6 oxygens in the first shell and 2 or 4 carbons in the second shell as analyzed by X-ray absorption spectroscopy (XAS), which was similar to chromium acetate. The valence state of Cr in Cr(III) and Cr(VI) treated nutrient solution was not changed, while Cr(VI) was reduced to Cr(III) in Cr(VI) spiked soil by soil organic matter. Spiking of Cr(III) induced reduction of Mn in soil, which resulted in an increase of bioavailable Mn concentration in the Cr(III) spiked soil. Therefore, the increased phytotoxic effect for lettuce in Cr(III) spiked soil can be attributed to the reduction of Mn and subsequent release of Mn(II). For Cr(III) contaminated soil, Mn speciation should be considered, and bioavailable Mn concentration should be monitored although Cr existed as Cr(III) in soil.
Mostrar más [+] Menos [-]Stable-isotopic analysis and high-throughput pyrosequencing reveal the coupling process and bacteria in microaerobic and hypoxic methane oxidation coupled to denitrification Texto completo
2019
Cao, Qin | Liu, Xiaofeng | Li, Na | Xie, Zhijie | Li, Zhidong | Li, Dong
Microaerobic and hypoxic methane oxidation coupled to denitrification (MAME-D and HYME-D) occur in stabilized landfills with leachate recirculation when biological denitrification is limited by lack of organics. To evaluate nitrate denitrification efficiency and culture MAME-D/HYME-D involved bacteria, a leach bed bioreactor semi-continuous experiment was conducted for 60 days in 5 runs, under nitrate concentrations ranging of 20 mg/L–55 mg/L, wherein 5% sterile leachate was added during runs 4 and 5. Although the HYME-D system demonstrated high denitrification efficiency (74.93%) and nitrate removal rate reached 2.62 mmol N/(L⋅d), the MAME-D system exhibited a denitrification efficiency of almost 100% and nitrate removal rate of 4.37 mmol N/(L⋅d). The addition of sterile leachate increased the nitrate removal rate in both systems, but caused the decrease of methane consumption in HYME-D. A stable isotope batch experiment was carried out to investigate the metabolic products by monitoring the 13CO2 and 15N2O production. The production of organic intermediates such as citrate, lactic acid, acetate, and propionic acid were also observed, which exhibited a higher yield in HYME-D. Variations in the microbial communities were analyzed during the semi-continuous experiment. MAME-D was mainly conducted by the association of type Ⅰ methanotroph Methylomonas and the methylotrophic denitrifier Methylotenera. Methane fermentation processed by Methylomonas under hypoxic conditions produced more complex organic intermediates and increased the diversity of related heterotrophic denitrifiers. The addition of sterile real leachate, resulting in increase of COD/N, influenced the microbial community of HYME-D system significantly.
Mostrar más [+] Menos [-]Microfiber release from different fabrics during washing Texto completo
2019
Yang, Libiao | Qiao, Fei | Lei, Kun | Li, Huiqin | Kang, Yu | Cui, Song | An, Lihui
Microfiber is a subgroup of microplastics and accounts for a large proportion of microplastics in aquatic environment, especially in municipal effluents. The purpose of the present study was to quantify microfiber shedding from three most populate synthetic textile fabrics: polyester, polyamide, and acetate fabrics. The results showed that more microfibers were released after washing with a pulsator laundry machine than a platen laundry machine. The greatest number of microfibers was released from acetate fabric, which was up to 74,816 ± 10,656 microfibers/m2 per wash, although microfibers were shed from all materials. Moreover, an increasing trend was found in the number of microfibers shedding from synthetic fabrics with the washing temperature increasing, and greater microfiber release occurred when washing fabrics with detergent rather than with water alone. The lint filter bag equipped with the pulsator laundry machine retained the longer microfibers (>1000 μm), but not the shorter microfibers (<500 μm) instead of releasing into the drainage system. Our data suggested that microfibers released during washing of synthetic fabrics may be an important source of microfibers in aquatic environment due to the increasing production and use of synthetic fabrics globally. Thus, more efficient filtering bags or other technologies in household washing machines should be developed to prevent and reduce the release of microfibers from domestic washing.
Mostrar más [+] Menos [-]Uptake, translocation and biotransformation of N-ethyl perfluorooctanesulfonamide (N-EtFOSA) by hydroponically grown plants Texto completo
2018
Zhao, Shuyan | Zhou, Tao | Zhu, Lingyan | Wang, Bohui | Li, Ze | Yang, Liping | Liu, Lifen
N-ethyl perfluorooctane sulfonamide (N-EtFOSA) is an important perfluorooctanesulfonate (PFOS) precursor (PreFOS) which is used in sulfluramid. The present work studied the uptake, translocation and metabolism of N-EtFOSA in wheat (Triticum aestivum L.), soybean (Glycine max L. Merrill) and pumpkin (Cucurbita maxima L.) by hydroponic exposure. Except for parent N-EtFOSA, its metabolites of perfluorooctane sulfonamide acetate (FOSAA), perfluorooctane sulfonamide (PFOSA), PFOS, perfluorohexane sulfonate (PFHxS) and perfluorobutane sulfonate (PFBS) were detected in the roots and shoots of all the three plant species examined. This suggested that plant roots could take up N-EtFOSA from solutions efficiently, and translocate to shoots. A positive correlation was found between root concentration factors (RCFs) of N-EtFOSA and root lipid content. Much higher proportion of N-EtFOSA transformation products in plant tissues than in the solutions suggested that N-EtFOSA could be in vivo metabolized in plant roots and shoots to FOSAA, PFOSA and PFOS, and other additional shorter-chain perfluoroalkane sulfonates (PFSAs), including PFHxS and PFBS. The results suggested that plants had biotransformation pathways to N-EtFOSA that were different than those from microorganisms and animals. This study provides important information about the uptake and metabolism of PreFOSs in plants.
Mostrar más [+] Menos [-]Calibration and field performance of triolein embedded acetate membranes for passive sampling persistent organic pollutants in water Texto completo
2012
Tang, Jianfeng | Chen, Shan | Xu, Yiping | Zhong, Wenjue | Ma, Mei | Wang, Zijian
Triolein embedded cellulose acetate membrane (TECAM) passive samplers provide potentially powerful tool for monitoring time weighted average concentrations (CTWA) of trace hydrophobic organic contaminants in water. To study the field performance of TECAM, exchange kinetics of chemicals between water and TECAM were studied at different temperature and water flow rates. Results showed that the uptake rate constant (kᵤ) in TECAM was less sensitive to temperature variation than the SPMD and Chemcatcher. The kᵤ in TECAM was sensitive to even a slight change of the flow rate, which required the field calibration using performance reference compounds (PRCs). To estimate CTWA by TECAM, both empirical model and WBL model were compared in laboratory conditions, and only small differences were observed between the predicted and measured kᵤ. Field validation was conducted to test the sampler performance alongside spot sampling. A good agreement of water concentration was obtained by the two sampling techniques.
Mostrar más [+] Menos [-]