Refinar búsqueda
Resultados 1-10 de 86
Novel methodology for identification and quantification of microplastics in biological samples
2022
Malafaia, Guilherme | da Luz, Thiarlem Marinho | Araújo, Amanda Pereira da Costa | Ahmed, Mohamed Ahmed Ibrahim | Rocha-Santos, Teresa | Barceló, Damià
Currently, the evidence of the ingestion of microplastics (MPs) by organisms or the accumulation in different environmental compartments has been achieved using several methodological procedures. However, its uses have not been standardized across studies. In this study, we aim to assess and validate a protocol that can be useful for optimizing the identification and quantification procedures of polyethylene microplastics (PE MPs) in biological samples. Initially, considering that numerous studies filter samples previously digested in cellulosic membranes for isolation and analysis of MPs, we evaluated whether washing these membranes with different reagents could contribute to the complete detachment of particles, as well as to their dispersion in the obtained solutions. However, none of the tested reagents (dimethyl sulfoxide, acetone, ethyl alcohol and chloroform), including purified water, was able to completely remove the MPs adhered to the membranes or facilitate their dispersion in the solutions. On the other hand, we observed that the digestion of the membranes by acetonitrile constituted a procedure that prevents the loss of particles due to adherence, in addition to promoting good dispersion of MPs. Subsequently, we evaluated the use of Neubauer chambers for the quantification of MPs, having observed a good recovery rate (>92%) and results with insignificant variation, in PE MPs solutions with different concentrations (0.15; 0.075 and 0.0375 mg/mL). Ultimately, the validation of the proposed procedures took place from the evaluation of the accumulation of PE MPs in Astyanax spp. juveniles, having demonstrated the efficiency and sensitivity of the method proposed for this purpose. Subsequently, our study provides a methodological alternative that can optimize MPs quantifications in biological samples and reduce the generation of biased or unreliable results.
Mostrar más [+] Menos [-]The role of nanoplastics on the toxicity of the herbicide phenmedipham, using Danio rerio embryos as model organisms
2022
Santos, Joana | Barreto, Angela | Sousa, Érika M.L. | Calisto, Vânia | Amorim, Mónica J.B. | Maria, Vera L.
Once in the aquatic ecosystems, nanoplastics (NPls) can interact with other contaminants acting as vectors of transport and altering their toxicological effects towards organisms. Thus, the present study aims to investigate how polystyrene NPls (44 nm) interact with the herbicide phenmedipham (PHE) and affect its toxicity to zebrafish embryos. Single exposures to 0, 0.015, 0.15, 1.5, 15 and 150 mg/L NPls and 0.02, 0.2, 2 and 20 mg/L PHE were performed. Embryos were also exposed to the binominal combinations: 0.015 mg/L NPls + 2 mg/L PHE, 0.015 mg/L NPls + 20 mg/L PHE, 1.5 mg/L NPls + 2 mg/L PHE and 1.5 mg/L NPls + 20 mg/L PHE. Due to the low solubility of PHE in water, a solvent control was performed (0.01% acetone). PHE was quantified. Mortality, heartbeat and hatching rate, malformations appearance, locomotor behavior and biomarkers related to oxidative stress, neurotransmission and energy budgets were analyzed. During 96 h, NPls and PHE single and combined exposures did not affect embryos development. After 120 h, NPls induced hyperactivity and PHE induced hypoactivity. After 96 h, NPls increased catalase activity and PHE increased glutathione S-transferases activity. On the combination 0.015 mg/L NPls + 20 mg/L PHE, hyperactivity behavior was found, similar to 0.015 mg/L NPls, and cholinesterase activity was inhibited. Additionally, the combination 1.5 mg/L NPls + 20 mg/L PHE increased both catalase and glutathione S-transferases activities. The combination NPls with PHE affected more biochemical endpoints than the single exposures, showing the higher effect of the binominal combinations. Dissimilar interactions effects – no interaction, synergism and antagonism – between NPls and PHE were found. The current study shows that the effects of NPls on bioavailability and toxicity of other contaminants (e.g. PHE) cannot be ignored during the assessment of NPls environmental behavior and risks.
Mostrar más [+] Menos [-]Comprehensive evaluation of ionic liquid [Bmim][PF6] for absorbing toluene and acetone
2021
Ma, Xiaoling | Wang, Wenlong | Sun, Chenggong | Sun, Jing
Absorption is an eminent technology for volatile organic compounds (VOCs) elimination with the merits of high efficiency and low cost. Absorbent plays a critical role in the absorption process, and the thermal stability, saturation capacity, and regeneration performance should be concerned. As a kind of green and eco-friendly solvent, ionic liquid (IL) is expected to be a substitute for the conventional VOCs absorbent. In this study, 1-butyl-3-methylimidazolium hexafluorophosphate ([Bmim][PF₆]) is employed to absorb the modeling VOCs (toluene and acetone). Moreover, the used [Bmim][PF₆] is recovered by thermal distillation and the reusability is then conducted by consecutive batch experiments. Based on that, the thermal stability of [Bmim][PF₆] is comprehensively examined, in which the kinetic and thermodynamic parameters are also calculated. Results reveal that [Bmim][PF₆] owned promising toluene absorption performance with inlet concentration of 3000 mg/m³ and flow rate of 300 mL/min at 20 °C, it possesses the saturated adsorption capacity of 5.16 mg/g. [Bmim][PF₆] also shows satisfying thermal stability up to 610 K. In addition, thermal distillation is proved to be a reliable regeneration route on account of the recovered [Bmim][PF₆] remained satisfying capacity even after five cycles.
Mostrar más [+] Menos [-]Quantification of tire tread wear particles in microparticles produced on the road using oleamide as a novel marker
2021
Chae, Eunji | Jung, Uiyeong | Choi, Sung-Seen
In general, tire tread rubber compounds contain oleamide for improvement of manufacturing processibility, mold release characterization, and abrasion resistance. Tire tread wear particles (TWPs) are one of major contributors to microplastic emissions. In this study, a novel analytical method for quantification of TWP in microparticles produced on the road (road dust, MPRs) was developed by employing oleamide as a new marker. MPRs were collected at bus stops in autumn, winter, and summer seasons. MPRs of 38–63, 63–106, 106–212, and 212–500 μm obtained by size separation were employed for the analysis. Rubber components for bus and passenger car tire tread compounds were identified using pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS). Oleamide was extracted from the MPRs with acetone and was identified using GC/MS. The oleamide concentration was analyzed using GC equipped with flame ionization detector (FID). The TWP contents of the MPRs were determined using the oleamide concentrations and the reference compound formulations. In order to reduce the sampling errors, each experiment was carried out five times and the results were averaged. The TWP contents of the MPRs were 1.4–4.7 wt% and were different according to the sampling seasons and places. The TWP contents were increased by increasing the traffic volume and the temperature.
Mostrar más [+] Menos [-]Sources of oxygenated volatile organic compounds (OVOCs) in urban atmospheres in North and South China
2020
Huang, Xiao Feng | Zhang, Bin | Xia, Shi-Yong | Han, Yu | Wang, Chuan | Yu, Guang-He | Feng, Ning
Oxygenated volatile organic compounds (OVOCs) are critical precursors of atmospheric ozone (O₃) and secondary organic aerosols (SOA). Although China is experiencing increasing O₃ pollution from north to south, understanding the major sources of OVOCs in this region is still limited due to their active photochemical behaviors. In this study, five critical OVOCs at a northern urban site (Beijing) and a southern urban site (Shenzhen) were monitored in summer using proton transfer reaction-mass spectrometry (PTR-MS). The mean total concentration of VOCs measured in Beijing (39.4 ppb) was much higher than that measured in Shenzhen (16.7 ppb), with methanol and formaldehyde being the most abundant in concentration at both sites. The source apportionment of daytime OVOCs was conducted effectively using a photochemical age-based parameterization method. Biogenic and anthropogenic secondary sources were the main sources of formaldehyde, acetaldehyde, and acetone at both sites, with a total contribution of 46–82%; acetone also had a large regional-scale background contribution (36–38%); methanol and methyl ethyl ketone (MEK) were mainly derived from anthropogenic primary sources (35–55%) at both sites. In addition, the regional background levels of OVOCs measured in North China were shown to be much higher than those measured in South China. The calculation of the total O₃ formation potential (OFP) of OVOCs highlights the comparable contributions from anthropogenic and biogenic sources in both Beijing and Shenzhen, indicating the important role of biogenic OVOC sources even in polluted environments. Since biogenic sources are already important but uncontrollable, anthropogenic emissions in China need to be restricted even more critically in the future.
Mostrar más [+] Menos [-]Ambient volatile organic compounds (VOCs) in communities of the Athabasca oil sands region: Sources and screening health risk assessment
2018
Bari, Md Aynul | Kindzierski, Warren B.
An investigation of ambient levels and sources of volatile organic compounds (VOCs) and associated public health risks was carried out at two northern Alberta oil sands communities (Fort McKay and Fort McMurray located < 25 km and >30 km from oil sands development, respectively) for the period January 2010–March 2015. Levels of total detected VOCs were comparatively similar at both communities (Fort McKay: geometric mean = 22.8 μg/m³, interquartile range, IQR = 13.8–41 μg/m³); (Fort McMurray: geometric mean = 23.3 μg/m³, IQR = 12.0–41 μg/m³). In general, methanol (24%–50%), alkanes (26%–32%) and acetaldehyde (23%–30%) were the predominant VOCs followed by acetone (20%–24%) and aromatics (∼9%). Mean and maximum ambient concentrations of selected hazardous VOCs were compared to health risk screening criteria used by United States regulatory agencies. The Positive matrix factorization (PMF) model was used to identify and apportion VOC sources at Fort McKay and Fort McMurray. Five sources were identified at Fort McKay, where four sources (oil sands fugitives, liquid/unburned fuel, ethylbenzene/xylene-rich and petroleum processing) were oil sands related emissions and contributed to 70% of total VOCs. At Fort McMurray six sources were identified, where local sources other than oil sands development were also observed. Contribution of aged air mass/regional transport including biomass burning emissions was ∼30% of total VOCs at both communities. Source-specific carcinogenic and non-carcinogenic risk values were also calculated and were below acceptable and safe levels of risk, except for aged air mass/regional transport (at both communities), and ethylbenzene/xylene-rich (only at Fort McMurray).
Mostrar más [+] Menos [-]Efficient anaerobic bioremediation of high-concentration benzo[a]pyrene in marine environments
2021
Leng, Qingxue | Mu, Jun | Yang, Guangfeng
Benzo[a]pyrene (BaP), a persistent organic pollutant that may accumulate in sea sediments after oil spill or BaP chemical leakage accidents, considerably harms marine ecosystems and human health. Previous studies have been predominantly focused on its degradation at low concentrations, while the remediation of BaP pollution with high concentrations was neglected. Additionally, the metabolic pathways associated with its anaerobic degradation remain unclear. As a first attempt, super-efficient systems for BaP anaerobic degradation were established, and the corresponding metabolic pathways were elucidated in this study. The results showed that the BaP removal rate in BaP-only system with initial concentrations of 200 mg/L reached 3.09 mg/(L·d) within 45 days. Co-solvent, acetone promoted anaerobic BaP degradation (4.252 mg/(L·d)), while dichloromethane showed a newly-discovered co-metabolic effect. In the system with 500 mg/L of BaP and dichloromethane addition, the removal rate increased drastically (14.64 mg/(L·d)) at 400 mg/L turn point of BaP. Additionally, the corresponding microbial community-level metabolic network was firstly proposed.
Mostrar más [+] Menos [-]Exploration of sources of OVOCs in various atmospheres in southern China
2019
Huang, Xiao Feng | Wang, Chuan | Zhu, Bo | Lin, Li-Liang | He, Ling-Yan
Oxygenated volatile organic compounds (OVOCs) are critical atmospheric ozone and secondary organic aerosol (SOA) precursors and radical sources, while understanding of OVOC sources in the atmosphere, especially with large anthropogenic emissions, still has large uncertainties. A high-sensitivity proton transfer reaction mass spectrometer (PTR-MS) was deployed in vastly different atmospheres in southern China, including an urban site (SZ-U), a regional site (NA-R), and a background site (NL-B). Four critical OVOCs, i.e., methanol, acetone, methyl ethyl ketone (MEK) and acetaldehyde, five groups of aromatic hydrocarbons, isoprene and acetonitrile were measured with a high time resolution. The featured relative abundance and diurnal variations of the OVOCs indicated that methanol, acetone and MEK had prominent contributions from urban industrial activities, while acetaldehyde was closely related to the photochemical formation at all three sites. The photochemical age-based parameterization method was improved locally and then applied to quantify different sources of daytime OVOCs: anthropogenic secondary and biogenic sources (together 60–73%) were always the dominant source for acetaldehyde in various atmospheres; in addition to a significant background for methanol, acetone and MEK, anthropogenic primary emissions (mostly industrial) were their dominant source at SZ-U (38–73%), while biogenic sources played the key role for them at NL-B (30–43%); biomass burning contributed a small fraction of 5–17% for the four OVOCs at the three sites.
Mostrar más [+] Menos [-]Waste water treatment plants as sources of polyfluorinated compounds, polybrominated diphenyl ethers and musk fragrances to ambient air
2011
Weinberg, Ingo | Dreyer, Annekatrin | Ebinghaus, Ralf
To investigate waste water treatment plants (WWTPs) as sources of polyfluorinated compounds (PFCs), polybrominated diphenyl ethers (PBDEs) and synthetic musk fragrances to the atmosphere, air samples were simultaneously taken at two WWTPs and two reference sites using high volume samplers. Contaminants were accumulated on glass fiber filters and PUF/XAD-2/PUF cartridges, extracted compound-dependent by MTBE/acetone, methanol, or hexane/acetone and detected by GC-MS or HPLC-MS/MS. Total (gas+particle phase) concentrations ranged from 97 to 1004pgm⁻³ (neutral PFCs), <MQL to 13pgm⁻³ (ionic PFCs), 5781 to 482,163pgm⁻³ (musk fragrances) and <1 to 27pgm⁻³ (PBDEs) and were usually higher at WWTPs than at corresponding reference sites, revealing that WWTPs can be regarded as sources of musk fragrances, PFCs and probably PBDEs to the atmosphere. Different concentrations at the two WWTPs indicated an influence of WWTP size or waste water origin on emitted contaminant amounts.
Mostrar más [+] Menos [-]Multisize particulate matter and volatile organic compounds in arid and semiarid areas of Northwest China
2022
Zhou, Xi | Li, Zhongqin | Zhang, Tingjun | Wang, Feiteng | Tao, Yan | Zhang, Xin
To investigate the chemical components, sources, and interactions of particulate matter (PM) and volatile organic compounds (VOCs), a field campaign was implemented during the spring of 2018 in nine cities in northwestern (NW) China. PM was mainly contributed by organic matter and water-soluble inorganic ions (41% for PM₁₀ and approximately 60% for PM₂.₅ and PM₁). Two typical haze patterns were observed: anthropogenic pollution type (AP-type), wherein contributions of sulfate, nitrate, and ammonium (SNA) increased, and dust pollution type (DP-type), wherein contributions of Ca²⁺ increased and SNA decreased. Source appointment suggested that regional sources contributed close to half to PM₂.₅ pollution (40% for AP-type and 50% for DP-type). Thus, sources from regional transport are also important for haze and dust pollution. The ranking of VOC concentrations was methanol > acetaldehyde > formic acid + ethanol > acetone. Compared with other cities, there are higher oxygenated VOCs (OVOCs) and lower aromatics in NW China. The relationships between VOCs and PM were discussed. The dominating secondary organic aerosols (SOA) formation potential precursors were C₁₀–aromatics, xylene, and styrene under low–nitrogen oxide (NOx) conditions, and benzene, C₁₀–aromatics, and toluene dominated under high–NOx conditions. The quadratic polynomial was the most suitable fitting model for their correlation, and the results suggested that VOC oxidations explained 6.1–10.8% and 9.9–20.7% of SOA formation under high–NOx and low–NOx conditions, respectively.
Mostrar más [+] Menos [-]