Refinar búsqueda
Resultados 1-10 de 353
Acute toxicity of povidone-iodine (Betadine) in common carp (Cyprinus carpio L. 1758)
2017
Forouhar Vajargah, Mohammad | Mohammadi Yalsuyi, Ahmad | Hedayati, Aliakbar
Organisms in aquatic environments are exposed to a number of pollutants such as pharmaceutical residues. As such, the aim of the present study is to achieve the Lethal Concentration (LC50) of Povidone-iodine (Betadine) for Cyprinus carpio. To do so, the study employs samples, weighing 4±1 [mean±SD] gr, and carries out an experiment in static condition. Based on OECD instructions, after a period of 4 days under controlled water, the physicochemical factors give the following results: pH= 8-8.3, BOD= 690 mg/l, total hardness= 210 mg, and CaCo3 and temperature= 17±0.1 °C. All fish are acclimatized for 10 days in an aquarium, 60×55×30 cm in size, which included the control group (no toxic concentration) as well as the treated aquariums, with Betadine concentration of 20, 40, 60, 80, 100, 120, 140, 160, 180, 200, 400, and 600 mg/l. LC10, LC20, LC30, LC40, LC50, LC60, LC70, LC80, LC90, and LC95 have been measured for 6, 12, 18, and 24 hours. LC50 24h Betadine for C. carpio has been 158.273 ml/l, showing no mortality after 24 hours (i.e. 48h, 72h, and 96h). Results of the present study suggest that Betadine is practically nontoxic and not irritant at low concentrations for this species and it has a short half-life in aquatic environments.
Mostrar más [+] Menos [-]Toxicity and fate of chiral insecticide pyriproxyfen and its metabolites in zebrafish (Danio rerio)
2021
Wei, Yimu | Cui, Jingna | Zhai, Wangjing | Liu, Xueke | Zhou, Zhiqiang | Wang, Peng | Liu, Donghui
Pyriproxyfen is a juvenile hormone analogue insecticide used worldwide. At present, the potential threat of pyriproxyfen to aquatic organism has not been well explored. In this work, the bioaccumulation, metabolic profile and toxicity of pyriproxyfen and its metabolites to zebrafish were studied, and the enantioselectivity of pyriproxyfen and the major chiral metabolites were also determined. Sixteen metabolites of pyriproxyfen in zebrafish were identified. Hydroxylation, ether linkage cleavage and oxidation in phase I metabolism, followed by sulfate and glucuronic acid conjugation. The bioconcentration factors ranged from 1175 to 1246. Hydroxylation metabolites of pyriproxyfen showed enantioselective behavior in zebrafish with enantiomer fractions (EFs) of 4′–OH– pyriproxyfen and 5″–OH– pyriproxyfen ranged from 0.50 to 0.71. Toxicological indexes including acute toxicity, joint toxicity and oxidative stress were tested. Among all the metabolites, 4′–OH– pyriproxyfen was found 2 folds more toxic to zebrafish than pyriproxyfen. (−)-Pyriproxyfen was found 2 folds more toxic than rac- and (+)-pyriproxyfen. Antagonistic effects were found in binary joint toxicity of pyriproxyfen and its hydroxylated metabolites. Pyriproxyfen and its metabolites also showed oxidative stress damage by inhibiting the activity of CAT and SOD and increasing MDA. This work provided deep insight into the metabolism and the potential risks of pyriproxyfen to aquatic organisms.
Mostrar más [+] Menos [-]Using hydrogen peroxide to control cyanobacterial blooms: A mesocosm study focused on the effects of algal density in Lake Chaohu, China
2021
Chen, Chao | Wang, Yiyao | Chen, Kaining | Shi, Xiaoli | Yang, Gang
The application of hydrogen peroxide (H₂O₂) to control harmful algal blooms is affected by algal density and species. In the present study, a simulation field study was carried out to evaluate the removal of cyanobacteria with high algal density (chlorophyll a of approximately 220–250 μg/L) and low algal density (chlorophyll a of approximately 30–50 μg/L) using 10, 20 mg/L H₂O₂ and 5 mg/L H₂O₂. The dynamics of algal biomass, nutrients, microcystins, phytoplankton, and zooplankton were measured within 7 d. The results showed that 5 mg/L H₂O₂ effectively eliminated algal biomass (measured as chlorophyll a and phycocyanin) and inhibited 50% of the photosynthetic activity of the cyanobacteria at 7 d in the low algal cell density group, while the same inhibition rate was observed in the high algal cell density group when the H₂O₂ was 20 mg/L. However, using a high dosage of H₂O₂, such as 10 mg/L, to suppress cyanobacteria with high biomass could result in a dramatic increase in nutrients and microcystins in the water column. The portion of eukaryotic algae, such as Chlorophyta, Bacillariophyta and Euglenophyta, in the phytoplankton community increased with increasing H₂O₂ concentrations; moreover, the dominant species of cyanobacteria changed from the nontoxic genus Dactylococcopsis to the toxic genus Oscillatoria, which may result in acute toxicity to zooplankton. Our results demonstrated that the application of H₂O₂ to control cyanobacterial blooms at the early stage when algal cell density was low posed less potential ecological risks and may have increased the diversity of the phytoplankton community.
Mostrar más [+] Menos [-]Metal lability and environmental risk in anthropogenically disturbed Antarctic melt streams
2021
Koppel, Darren J. | Bishop, Jordan | Kopalová, Kateřina | Price, Gwilym A.V. | Brown, Kathryn E. | Adams, Merrin S. | King, Catherine K. | Jolley, Dianne F.
Antarctic melt streams are important ecosystems that increasingly face contaminant pressures from anthropogenic sources. Metal contaminants are often reported in the limno-terrestrial environment but their speciation is not well characterised, making environmental risk assessments difficult. This paper characterises labile metal concentrations in five melt streams and three shallow lakes around the Casey and Wilkes research stations in East Antarctica using chemical extracts and field deployments of diffusive gradients in thin-film (DGT) samplers. An acute toxicity test with field-collected Ceratadon purpeus and taxonomic identification of diatoms in melt streams were used to infer environmental risk. Copper and zinc were the most labile metals in the melt streams. DGT-labile copper concentrations were up to 3 μg Cu L⁻¹ in melt-stream waters but not labile below the sediment-water interface. DGT-labile zinc concentrations were consistent above and below the sediment-water interface at concentrations up to 14 μg Zn L⁻¹ in four streams, but one stream showed evidence of zinc mineralisation in the sediment with a flux to overlying and pore waters attributed to the reductive dissolution of iron and manganese oxides. Other metals, such as chromium, nickel, and lead were acid-extractable from the sediments, but not labile in pore waters or overlying waters. All streams had unique compositions of freshwater diatoms, but one had particularly reduced diversity and richness, which correlated to metal contamination and sediment physico-chemical properties such as a finer particle size. In laboratory bioassays with field-collected samples of the Antarctic moss C. purpeus, there was no change in photosynthetic efficiency following 28-d exposure to 700, 900, 1060, or 530 μg L⁻¹ of cadmium, copper, nickel, and zinc, respectively. This study shows that microorganisms such as diatoms may be at greater risk from contaminants than mosses, and highlights the importance of geochemical factors controlling metal lability.
Mostrar más [+] Menos [-]Chronic toxicity of waterborne thallium to Daphnia magna
2021
Nagel, Andrew H. | Cuss, Chad W. | Goss, Greg G. | Shotyk, William | Glover, Chris N.
There is limited information regarding the toxicity of the trace element thallium (Tl) to aquatic biota, most of which assesses acute toxicity and bioaccumulation. The relative lack of chronic Tl toxicity data compromises the establishment of water quality criteria for this trace metal. In the presented work, chronic toxicity endpoints (final body weight (a proxy measure of growth), survival, and reproduction) and Tl body burden were measured in the freshwater crustacean Daphnia magna during a 21-day exposure to dissolved Tl. Thallium caused complete mortality in daphnids between exposure concentrations of 424 and 702 μg L⁻¹. In contrast with previously published work examining acute Tl toxicity, exposure to Tl for 21 days was not associated with changes in whole-body potassium concentration. This was despite a 710-fold increase in Tl body burden in animals exposed to 424 μg L⁻¹ relative to the control. Median effect concentrations (EC₅₀’s) for growth and reproduction (total neonates produced), were 1.6 (95% confidence interval: 1.0–3.1) and 11.1 (95% confidence interval: 5.5–21.8) μg Tl L⁻¹, respectively. A no observable effect concentration (NOEC) of 0.9 μg Tl L⁻¹ for growth, and a NOEC range of 0.9–83 μg Tl L⁻¹ for a variety of reproductive metrics, was measured. A lowest observable effect concentration (LOEC) of 8.8 μg Tl L⁻¹ was determined for the effects of Tl on growth and most of the reproductive endpoints examined. These data indicate that under controlled laboratory conditions D. magna is significantly less sensitive to Tl than the species on which the current Canadian Council of Ministers of the Environment regulatory guideline value of 0.8 μg L⁻¹ is based.
Mostrar más [+] Menos [-]Enantioselective residues and toxicity effects of the chiral triazole fungicide hexaconazole in earthworms (Eisenia fetida)
2021
Liu, Tong | Fang, Kuan | Liu, Yalei | Zhang, Xiaolian | Han, Lingxi | Wang, Xiuguo
The enantioselective toxic effect and environmental behavior of chiral pesticides have attracted increasing research attention. In this study, the enantioselective toxicity and residues of hexaconazole (HEX) in earthworms (Eisenia fetida) were investigated. In the present study, significant enantioselective degradation characteristics were observed in artificial soil with the R-enantiomer preferentially degrading (p < 0.05); however, no significant enantioselective bioaccumulation was observed in the earthworms (p > 0.05). The acute toxicity of S-(+)-HEX was higher than that of R-(−)-HEX in earthworms, with 48-h LC₅₀ values of 8.62 and 22.35 μg/cm², respectively. At 25 mg/kg, enantiospecific induction of oxidative stress was observed in earthworms; moreover, S-(+)-HEX had a greater influence on the contents of malonaldehyde, cytochrome P450, and 8-hydroxy-2-deoxyguanosine than R-(−)-HEX. These results were consistent with those of the enrichment analysis of differentially expressed genes. The transcriptome sequencing results showed that S-(+)-HEX had a more significant influence on steroid biosynthesis, arachidonic acid metabolism, and cell cycle processes than R-(−)-HEX, leading to abnormal biological function activities. These results indicate that S-(+)-HEX may pose a higher risk to soil organisms than R-(−)-HEX. This study suggests that the environmental risk of chiral pesticides to nontarget organisms should be assessed at the enantiomeric level.
Mostrar más [+] Menos [-]Monobutyl phthalate (MBP) can dysregulate the antioxidant system and induce apoptosis of zebrafish liver
2020
Jiao, Yaqi | Tao, Yue | Yang, Yang | Diogene, Tuyiringire | Yu, Hui | He, Ziqing | Han, Wei | Chen, Zhaobo | Wu, Pan | Zhang, Ying
In this paper, the acute toxicity of monobutyl phthalate (MBP), the main hydrolysis product of dibutyl phthalate, on adult zebrafish liver antioxidant system was studied. Compared the toxicity effect of MBP and DBP by histopathology and apoptosis experiments, we speculated that the toxic effects of DBP on animals may be caused by its metabolite MBP. The results indicated that the antioxidant Nrf2-Keap1 pathway was insufficient to resist MBP-induced hepatotoxicity and led to an imbalance of membrane ion homeostasis and liver damage. Decreased cell viability, significant tissue lesions and early hepatocyte apoptosis were observed in the zebrafish liver in MBP exposure at high concentration (10 mg/L). The activities of antioxidant enzymes and ATPases in zebrafish liver were inhibited with increased malondialdehyde (MDA) content and alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities. Integrated biomarker response (IBR) calculation results indicated that MBP mainly inhibited catalase (CAT) activity. Simultaneously, the expression of antioxidant-related genes (SOD, CAT, GPx, Nrf2, HO-1) was down-regulated, while apoptosis-related genes (p53, bax, cas3) were significantly up-regulated.
Mostrar más [+] Menos [-]An ICT-based fluorescent probe with a large Stokes shift for measuring hydrazine in biological and water samples
2020
Zhu, Meiqing | Xu, Yimin | Sang, Linfeng | Zhao, Zongyuan | Wang, Lijun | Wu, Xiaoqin | Fan, Fugang | Wang, Yi | Li, Hui
As a strong reductant and highly active alkali, hydrazine (N2H4) has been widely used in chemical industry, pharmaceutical manufacturing and agricultural production. However, its high acute toxicity poses a threat to ecosystem and human health. In the present study, a ratiometric fluorescent probe for the detection of N2H4 was designed, utilizing dicyanoisophorone as the fluorescent group and 4-bromobutyryl moiety as the recognition site. 4-(2-(3-(dicyanomethylene)-5,5-dimethylcyclohex-1-enyl) phenyl 4-brobutanoate (DDPB) was readily synthesized and could specially sense N2H4 via an intramolecular charge transfer (ICT) pathway. The cyclization cleavage reaction of N2H4 with a 4-bromobutyryl group released phenolic hydroxyl group and reversed the ICT process between hydroxy group and fluorophore, turning on the fluorescence in the DDPB-N2H4 complexes. DDPB exhibits a low cytotoxicity, reasonable cell permeability, a large Stokes shift (186 nm) and a low detection limit (86.3 nM). The quantitative determination of environmental water systems and the visualization fluorescence of DDPB test strips provides a strong evidence for the applications of DDPB. In addition, DDPB is suitable for the fluorescence imaging of exogenous N2H4 in HeLa cells and zebrafish.
Mostrar más [+] Menos [-]Identifying spatio-temporal dynamics of trace metals in shallow eutrophic lakes on the basis of a case study in Lake Taihu, China
2020
Yang, Jingwei | Holbach, Andreas | Wilhelms, Andre | Krieg, Julia | Qin, Yanwen | Zheng, Binghui | Zou, Hua | Qin, Boqiang | Zhu, Guangwei | Wu, Tingfeng | Norra, Stefan
In shallow eutrophic lakes, metal remobilization is closely related to the resuspension and eutrophication. An improved understanding of metal dynamics by biogeochemical processes is essential for effective management strategies. We measured concentrations of nine metals (Cr, Cu, Zn, Ni, Pb, Fe, Al, Mg, and Mn) in water and sediments during seven periods from 2014 to 2018 in northern Lake Taihu, to investigate the metal pollution status, spatial distributions, mineral constituents, and their interactions with P. Moreover, an automatic weather station and online multi-sensor systems were used to measure meteorological and physicochemical parameters. Combining these measurements, we analyzed the controlling factors of metal dynamics. Shallow and eutrophic northern Lake Taihu presents more serious metal pollution in sediments than the average of lakes in Jiangsu Province. We found chronic and acute toxicity levels of dissolved Pb and Zn (respectively), compared with US-EPA “National Recommended Water Quality Criteria”. Suspended particles and sediment have been polluted in different degrees from uncontaminated to extremely contaminated according to German pollution grade by LAWA (Bund/Länder-Arbeitsgemeinschaft Wasser). Polluted particles might pose a risk due to high resuspension rate and intense algal activity in shallow eutrophic lakes. Suspended particles have similar mineral constituents to sediments and increased with increasing wind velocity. Al, Fe, Mg, and Mn in the sediment were rarely affected by anthropogenic pollution according to the geoaccumulation index. Among them, Mn dynamics is very likely associated with algae. Micronutrient uptake by algal will affect the migration of metals and intensifies their remobilization. Intensive pollution of most particulate metals were in the industrialized and down-wind area, where algae form mats and decompose. Moreover, algal decomposition induced low-oxygen might stimulate the release of metals from sediment. Improving the eutrophication status, dredging sediment, and salvaging cyanobacteria biomass are possible ways to remove or reduce metal contaminations.
Mostrar más [+] Menos [-]Butylated hydroxytoluene induces hyperactivity and alters dopamine-related gene expression in larval zebrafish (Danio rerio)
2020
Liang, Xue-fang | Zhao, Yaqian | Liu, Wang | Li, Zhitong | Souders, Christopher L. | Martyniuk, Christopher J.
Butylated hydroxytoluene (BHT) is one of the most frequently used synthetic phenolic antioxidants added to food and consumer products such as plastics as a preservative. Due to its high production volume, BHT has been detected in aquatic environments, raising concerns about sub-lethal toxicity. However, there are limited toxicological data for BHT, especially in fish. In this study, zebrafish embryos were exposed to BHT at concentrations ranging 0.01–100 μM for up to 6 days post fertilization (dpf). Acute toxicity was assessed, and experiments revealed that BHT had a 96 h LC50 value of 57.61 μM. At sub-lethal doses (0.1–60 μM), BHT markedly decreased heart rates of zebrafish embryos at 48 h and 72 h by ∼25–30%. Basal and maximal respiration of zebrafish embryos at 24 hpf were decreased by 59.3% and 41.4% respectively following exposure to 100 μM BHT. Behavior in zebrafish was measured at 6 dpf following exposures to 0.01–10 μM BHT. Locomotor behaviors (e.g. total distance moved and velocity) were significantly increased in larvae at doses higher than 0.1 μM BHT. In addition, dark-avoidance behavior was decreased following exposure to 0.01 μM BHT, while conversely, it was increased in zebrafish exposed to 0.1 μM BHT. To investigate potential underlying mechanisms that could explain behavioral changes, transcripts involved in dopamine signaling were measured. Relative expression of dat mRNA was increased in larval fish from the 0.01 μM BHT treatment, while there were no effects on dat mRNA levels at higher concentrations. The mRNA levels of drd3 were decreased in zebrafish from the 1 μM BHT treatment. Taken together, BHT can affect the expression of the dopamine system, which is hypothesized to be related to the abnormal anxiety-associated behavior of larval zebrafish.
Mostrar más [+] Menos [-]