Refinar búsqueda
Resultados 1-10 de 1,192
Modeling Airflow in Urban High-Rise Building Areas and Climate Comfort
2024
Zahedifar, Tahmineh | Darabi, Hassan
Urban morphology impacts micro-climates, solar energy absorption, air flow, wind patterns, energy consumption, and air pollution concentration. Temperature control in public spaces reduces heat island formation, while ventilation corridors potentially improve air quality. However, despite the literature on airflow and urban tall buildings providing valuable insights, further research is needed to understand the complex relationship between airflow patterns and urban high-rise buildings. This research should consider factors such as landscape types, building height, density, and orientation. This research aims to examine airflow patterns in high-rise buildings that are influenced by nearby land use, which can impact ventilation and climate comfort. To investigate these objectives, we utilized the Universal Thermal Climate Index (UTCI) and Predicted Mean Vote Index (PMV) by conducting simulations using ENVI-met software. The results revealed that buildings with narrower widths have better wind warded front conditions, while those with an unfavorable wind angle or a narrow facade are less comfortable. Public spaces that face the wind benefit from improved ventilation. It is essential to consider the optimal arrangement, ventilation, and height of buildings to ensure the favorable airflow. Factors such as the placement of trees, the use of porous walls, water features such as fountains and sprinklers, and the local climate all contribute to creating better wind conditions. Investigating the reciprocal interaction between the landscape, high-rise buildings, and climate comfort could be considered in future research.
Mostrar más [+] Menos [-]Assessing Indoor Air Pollution within Different Areas of Female Beauty Centers and Exploring Their Relation to Various Respiratory Symptoms
2016
Almarshad, Saja
The staff working at beauty centers are exposed to various chemicalproducts used daily in their working environment. Both hair dressers and nail techniciansare exposed to chemicals that are known to have an influence on the respiratory system.In order to evaluate such influence, this cross-sectional observational study wasconducted on a randomly selected 14 beauty centers in Dammam City, Saudi Arabia. Atthe investigated salons, both of respiratory symptoms and the quality of air wereevaluated and data were analyzed statistically. 40.5% out of the 79 subjects included inthe study were hairdressers, 17.7% were nail technicians and (41.8%) were working inboth of the previously mentioned areas as part of their everyday practice. The staffcomplained of respiratory symptoms which include dyspnea, cough, phlegm, wheeze, andshortness of breath. Both hairdressers and nail technicians developed respiratorysymptoms while working in the salons. Indoor Air pollution was assessed and many datawere out of the normal standard ranges which include: relative humidity (RH), volatileorganic compounds (VOC), carbon dioxide (CO2), and ammonia (NH3). We conclude thatgood ventilation is required to reduce the influence of such substances on the respiratorysymptoms of the staff working at salons.
Mostrar más [+] Menos [-]Air Pollution in the Capital City of Bangladesh: Its Causes and Impacts on Human Health
2020
Khuda, K. E.
Air is one of the precious natural resources that are essential for animal including the human being. It is also the most important gift of nature without which human cannot survive. Pollution in the urban areas like Cairo, Delhi, Mexico and Dhaka far surpasses the acceptable limits set by the World Health Organization (WHO). Urban air pollution in the South Asian region is approximated to cause more than 300,000 deaths and billions of cases of respiratory disease per year. In Bangladesh, about 200000 people die each year due to the air pollution as the WHO estimates in 2018. The air in Dhaka City, the capital of Bangladesh, has become worsen to a level that the city has been identified as one of the most polluted cities in the world. Taking the problem with utmost importance into consideration as it is related with the public health, air pollution is being treated as one of the priority issues. The level of pollution at roadside environment is deeply connected with the density of motor vehicles plying on the roads. This situation is expected to worsen further in the upcoming days due to the increasing number of motor vehicles resulted from rapid economic growth and industrialization. This paper aims to provide the present statues of the air pollution in Dhaka city and some specific recommendations for making the city as a better living place through reducing its air pollution.
Mostrar más [+] Menos [-]Spatiotemporal Analysis of Carbon Monoxide Observed by Terra/MOPITT in the Troposphere of Iran
2020
Raispour, K. | Khosravi, Y.
It has been more than 20 years that the Measurement of Pollution in The Troposphere (MOPITT) mission onboard the NASA Terra satellite keeps providing us CO atmospheric concentration measurements around the globe. The current paper observes CO mixing ratio from the MOPITT Version 8 (MOP03J_V008) instrument in order to study the spatiotemporal analysis of CO (spanning from April 2000 to February 2020) in the Troposphere of Iran. Results indicate that the average CO in Iran’s troposphere has been 133.5 ppbv (i.e., 5.5 ppbv lower than the global mean CO). The highest distribution of CO (with an average of 150 ppbv) belongs to the city of Tehran (the capital of Iran) as well as the Caspian Sea coastal area, while the lowest value (with an average of less than 110 ppbv) has been estimated on the Zagros Mountains (southwestern Iran). The highest and lowest CO values have been observed in cold and hot months, respectively. Seasonally speaking, it is also clear that the highest and lowest carbon monoxide values occur in winter and summer, respectively. The vertical profile of MOPITT CO shows the maximum CO concentration at lower levels of the troposphere. It has been expanded up to 150 hPa. The trend is investigated by means of Pearson correlation coefficient statistical method. Overall, long-term monitoring of MOPITT CO in Iran indicates a decreasing trend of tropospheric CO over the 20 years (Y=-0.008X+449.31). Possible reasons for such a decrease can be related to improved transportation fleet, increased fuel quality, plans for traffic control, promotion of heating systems, and promotion of industrial fuels and factories.
Mostrar más [+] Menos [-]Characteristics and Health Risk of BTEX at Selected Different Microenvironments in an Industrial-Urban Area, Iran
2019
Tarassoli, A. | Esmaili Sari, A. | Bahramifar, N.
The present study monitors BTEX concentration in outdoor and indoor air of eight different microenvironments during summer 2017 and winter 2018 at Asaloyeh city, Iran's energy capital. It samples BTEX compounds by charcoal tubes, analyzing the samples by means of a gas chromatograph with a flame ionization detector. According to the obtained results, outdoor concentrations of BTEX have been higher than the indoor ones, for both seasons, with the highest outdoor and indoor BTEX being 21.70 and 18.59 μg/m3, respectively. Toluene has been the most abundant substance, among the investigated BTEX in all sampling points. Based on the MIR scale, m, p-xylene is the most dominant contributor to ozone formation potential among BTEX species. Indoor to outdoor (I/O) ratios of BTEX compounds range from 0.53 to 0.88 and 0.41 to 0.77 in winter and summer, respectively. The cumulative hazard index (HI) is within an acceptable range. The LTCR value of benzene concentration, obtained, exceeds the value of 1.0E-06, recommended by USEPA. Sensitivity analysis shows that benzene concentration, exposure duration, and inhalation rate have a greater impact on health risk assessment.
Mostrar más [+] Menos [-]Wood burning impact on the ambient air quality of four French cities : Evaluation of the approach by organic tracers | Impact de la combustion du bois sur la qualité de l'air ambiant de quatre villes de France : évaluation de l'approche par traceurs organiques
2009
Pissot, Nicolas | Besombes, Jean-Luc | Leoz-Garziandia, Eva | Jaffrezo, Jean-Luc
Nowadays, promoted as a renewable energy, biomass burning becomes more and more widespread all over the world. In urban and rural areas biomass, mainly wood, is burned for heating, cooking, and waste disposal purposes. This biofuel seems to be an alternative to the rarefaction of the fossil fuel and, moreover it decreases the emission of carbon dioxide causing global warming. However, wood smoke contains various air pollutants such as fine particulate matter (PM10, PM2.5), polycyclic aromatic hydrocarbons (PAHs), benzene, dioxins... and in consequence has an impact on the air quality. In order to estimate the contribution of wood burning on the atmospheric organic aerosol of urban areas, the French ministry of environment (MEEDDAT), called upon this study during the winter 2006/2007, in the French cities of Grenoble, Lille, Strasbourg and Gennevilliers. For this work, different species have been looked after. The global characterization of the atmospheric aerosols has been made taking in account the PM10, the organic carbon (OC), and the elementary carbon (EC). Measurement of biomass burning tracers (levoglucosan, mannosan, and galactosan) has been undertaken, as well as methoxyphenols, which are more specific wood smoke tracers. The analyses of organic tracers by gas chromatography coupled with a mass spectrometer detector (GC/MS) show average concentrations of levoglucosan in the range of 272 ng.m-3 for Gennevilliers to 1 148 ng.m-3 for Grenoble. Mannosan and galactosan have also been measured in all cities but in lower quantities. The methoxyphenols have been detected only in rare occasions and at the limit of detection of the analytical method. PM10 measurements range from 20.6 micro g.m-3 for Gennevilliers to 35.8 micro g.m-3 for Grenoble. At the same time, OC values range from 3.61 micro g.m-3 to 11.15 micro g.m-3. Moreover high correlations have been observed between levoglucosan and OC, respectively 0.80 and 0.86 for Grenoble and Strasbourg. In addition, with respectively 10.98 ng.m-3 and 8.20 ng.m-3, Grenoble and Strasbourg present the highest particulate PAHs average concentrations of the four cities. All these results seem to indicate that Grenoble and Strasbourg are more impacted by the biomass burning than the two other cities. And more particularly in Grenoble where the organic aerosol fraction is very huge, this last phenomenon is typically characteristic of the biomass burning. To conclude, this study shows and confirms the usefulness of levoglucosan as biomass burning tracer and the difficulty to use methoxyphenols as woodsmoke tracers in ambient areas. | De nos jours, l'utilisation du bois en tant que combustible est relativement répandue en France et dans le monde entier. L'augmentation du prix du pétrole et des autres sources d'énergie épuisables va certainement engendrer dans les années à venir une contribution accrue du chauffage domestique au bois. L'utilisation de cette source d'énergie renouvelable pose cependant de nombreux problèmes sur la santé humaine. En effet, la fumée émise lors de la combustion du bois contient un certain nombre de composés polluants, tels que les hydrocarbures aromatiques polycycliques (HAP), le benzène, les fines particules (PM10, PM2,5)... Les émissions de la combustion du bois ont donc un impact sur la qualité de l'air. Cet impact peut être évalué par l'étude de traceurs organiques spécifiques de la combustion du bois identifiables au sein de la composante organique des aérosols. Ces traceurs sont des produits provenant de la combustion de la cellulose et de l'hémicellulose tels que le lévoglucosan, mannosan, galactosan et des composés issus de la thermodégradation de la lignine tels que les méthoxyphénols. Cette méthode a été appliquée à une étude commanditée à l'INERIS par le ministère de l'Écologie, de l'Énergie, du Développement Durable et de l'Aménagement du Territoire (MEEDDAT), en partenariat avec des Associations agréées de la surveillance de la qualité de l'air (AASQA). L'objectif était de caractériser l'influence de la combustion du bois sur la composante organique de l'aérosol atmosphérique en site urbain. Des prélèvements d'aérosols ont été effectués sur une période allant de novembre 2006 à avril 2007, dans quatre grandes villes de France : Grenoble, Lille, Strasbourg, et Gennevilliers. L'analyse par chromatographie gazeuse couplée à un spectromètre de masse (GC/MS) des traceurs organiques les plus stables, lévoglucosan, mannosan et galactosan, confirme l'influence de cette source sur la qualité de l'air des quatre villes. Sur la période d'étude, la concentration moyenne en lévoglucosan varie de 272 ng.m-3 pour la ville de Gennevilliers à 1 148 ng.m-3 pour la ville de Grenoble. La confrontation des résultats de ces traceurs avec les données usuelles de caractérisation de l'aérosol, telles que le carbone organique (OC) et le carbone élémentaire (EC), montre une participation du chauffage au bois plus importante dans les villes de Grenoble et de Strasbourg. Les résultats d'analyse du lévoglucosan obtenus sur la ville de Gennevilliers indiquent une très bonne corrélation avec les HAP particulaires et les PM10. Ces résultats prouvent que la combustion du bois joue un rôle important sur la composition de la matière organique de l'aérosol atmosphérique et sur la pollution particulaire en milieu urbain. En revanche, les méthoxyphénols ont été peu détectés sur les divers échantillons analysés.
Mostrar más [+] Menos [-]Wood burning impact on the ambient air quality of four French cities : Evaluation of the approach by organic tracers | Impact de la combustion du bois sur la qualité de l'air ambiant de quatre villes de France : évaluation de l'approche par traceurs organiques
2009
Pissot, Nicolas | Besombes, Jean-Luc | Leoz-Garziandia, Eva | Jaffrezo, Jean-Luc | Laboratoire de Chimie Moléculaire et Environnement (LCME) ; Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry]) | Institut National de l'Environnement Industriel et des Risques (INERIS) | Laboratoire de glaciologie et géophysique de l'environnement (LGGE) ; Observatoire des Sciences de l'Univers de Grenoble (OSUG) ; Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)
National audience | Nowadays, promoted as a renewable energy, biomass burning becomes more and more widespread all over the world. In urban and rural areas biomass, mainly wood, is burned for heating, cooking, and waste disposal purposes. This biofuel seems to be an alternative to the rarefaction of the fossil fuel and, moreover it decreases the emission of carbon dioxide causing global warming. However, wood smoke contains various air pollutants such as fine particulate matter (PM10, PM2.5), polycyclic aromatic hydrocarbons (PAHs), benzene, dioxins... and in consequence has an impact on the air quality. In order to estimate the contribution of wood burning on the atmospheric organic aerosol of urban areas, the French ministry of environment (MEEDDAT), called upon this study during the winter 2006/2007, in the French cities of Grenoble, Lille, Strasbourg and Gennevilliers. For this work, different species have been looked after. The global characterization of the atmospheric aerosols has been made taking in account the PM10, the organic carbon (OC), and the elementary carbon (EC). Measurement of biomass burning tracers (levoglucosan, mannosan, and galactosan) has been undertaken, as well as methoxyphenols, which are more specific wood smoke tracers. The analyses of organic tracers by gas chromatography coupled with a mass spectrometer detector (GC/MS) show average concentrations of levoglucosan in the range of 272 ng.m-3 for Gennevilliers to 1 148 ng.m-3 for Grenoble. Mannosan and galactosan have also been measured in all cities but in lower quantities. The methoxyphenols have been detected only in rare occasions and at the limit of detection of the analytical method. PM10 measurements range from 20.6 micro g.m-3 for Gennevilliers to 35.8 micro g.m-3 for Grenoble. At the same time, OC values range from 3.61 micro g.m-3 to 11.15 micro g.m-3. Moreover high correlations have been observed between levoglucosan and OC, respectively 0.80 and 0.86 for Grenoble and Strasbourg. In addition, with respectively 10.98 ng.m-3 and 8.20 ng.m-3, Grenoble and Strasbourg present the highest particulate PAHs average concentrations of the four cities. All these results seem to indicate that Grenoble and Strasbourg are more impacted by the biomass burning than the two other cities. And more particularly in Grenoble where the organic aerosol fraction is very huge, this last phenomenon is typically characteristic of the biomass burning. To conclude, this study shows and confirms the usefulness of levoglucosan as biomass burning tracer and the difficulty to use methoxyphenols as woodsmoke tracers in ambient areas. | De nos jours, l'utilisation du bois en tant que combustible est relativement répandue en France et dans le monde entier. L'augmentation du prix du pétrole et des autres sources d'énergie épuisables va certainement engendrer dans les années à venir une contribution accrue du chauffage domestique au bois. L'utilisation de cette source d'énergie renouvelable pose cependant de nombreux problèmes sur la santé humaine. En effet, la fumée émise lors de la combustion du bois contient un certain nombre de composés polluants, tels que les hydrocarbures aromatiques polycycliques (HAP), le benzène, les fines particules (PM10, PM2,5)... Les émissions de la combustion du bois ont donc un impact sur la qualité de l'air. Cet impact peut être évalué par l'étude de traceurs organiques spécifiques de la combustion du bois identifiables au sein de la composante organique des aérosols. Ces traceurs sont des produits provenant de la combustion de la cellulose et de l'hémicellulose tels que le lévoglucosan, mannosan, galactosan et des composés issus de la thermodégradation de la lignine tels que les méthoxyphénols. Cette méthode a été appliquée à une étude commanditée à l'INERIS par le ministère de l'Écologie, de l'Énergie, du Développement Durable et de l'Aménagement du Territoire (MEEDDAT), en partenariat avec des Associations agréées de la surveillance de la qualité de l'air (AASQA). L'objectif était de caractériser l'influence de la combustion du bois sur la composante organique de l'aérosol atmosphérique en site urbain. Des prélèvements d'aérosols ont été effectués sur une période allant de novembre 2006 à avril 2007, dans quatre grandes villes de France : Grenoble, Lille, Strasbourg, et Gennevilliers. L'analyse par chromatographie gazeuse couplée à un spectromètre de masse (GC/MS) des traceurs organiques les plus stables, lévoglucosan, mannosan et galactosan, confirme l'influence de cette source sur la qualité de l'air des quatre villes. Sur la période d'étude, la concentration moyenne en lévoglucosan varie de 272 ng.m-3 pour la ville de Gennevilliers à 1 148 ng.m-3 pour la ville de Grenoble. La confrontation des résultats de ces traceurs avec les données usuelles de caractérisation de l'aérosol, telles que le carbone organique (OC) et le carbone élémentaire (EC), montre une participation du chauffage au bois plus importante dans les villes de Grenoble et de Strasbourg. Les résultats d'analyse du lévoglucosan obtenus sur la ville de Gennevilliers indiquent une très bonne corrélation avec les HAP particulaires et les PM10. Ces résultats prouvent que la combustion du bois joue un rôle important sur la composition de la matière organique de l'aérosol atmosphérique et sur la pollution particulaire en milieu urbain. En revanche, les méthoxyphénols ont été peu détectés sur les divers échantillons analysés.
Mostrar más [+] Menos [-]Estimation of air quality degradation due to Saharan dust at Nouakchott, Mauritania, from horizontal visibility data
2007
Ozer, Pierre | Laghdaf, MBOM | Lemine, S. O. M. | Gassani, Jean
peer reviewed | It is now irrefutable that air pollution caused by large amounts of Total Suspended Particulates (TSP) and respiratory particulates or Particulate Matter less than 10 mu m in aerodynamic diameter (PM10) has numerous undesired consequences on human health. Air quality degradation far from the African continent, in the US and in Europe, caused by high concentrations of African dust, is seen as a major threat even though most of these countries are very distant from the Sahara. Surprisingly, no estimates of TSP or PM10 levels near the Saharan dust source are available. Based on horizontal visibility observations which are reduced by the presence of dust in the atmosphere, TSP and PM10 levels are estimated throughout the year 2000 at Nouakchott-Airport, Mauritania, using relations found in the literature. It appears that concentrations of particles are significant both in terms magnitude and frequency, as the 24-hour PM10 thresholds established by the US EPA National Ambient Air Quality Standards and the EU Limits Values for Air Quality were exceeded 86 and 137 times, respectively. The average annual concentration is far above air quality standards and estimated at 159 mu g m(-3) for TSP and 108 mu g m(-3) for PM10. These very high particulate levels are likely to represent an important public health hazard and should be considered as a major environmental risk.
Mostrar más [+] Menos [-]Impact of short-term control measures on air quality: A case study during the 7th Military World Games in central China
2022
Mao, Yao | Liu, Weijie | Hu, Tianpeng | Shi, Mingming | Cheng, Cheng | Zhan, Changlin | Zhang, Li | Zhang, Jiaquan | Sweetman, A. J. (Andrew J.) | Jones, K. C. (Kevin C.) | Xing, Xinli | Qi, Shihua
The 7th Military World Games held in Wuhan (WH) in Oct 2019 provided an opportunity to clarify the impact of short-term control measures on air quality. Fine particulate matters (PM₂.₅) were collected in WH, Huangshi (HS), and Huanggang (HG) during the control (Oct 13–28, 2019) and non-control periods (Oct 29- Nov 5, 2019). The results showed that air quality was good during the control period, with the concentrations of PM₂.₅ and gaseous pollutants being below the Grade Ⅱ of China Ambient Air Quality Standard. Concentrations of PM₂.₅ and its major chemical components in the control period were significantly lower than those in the non-control period, with reductions ranging from 17% (trace elements) to 46% (elemental carbon). However, higher contributions of secondary components such as SO₄²⁻, NO₃⁻, NH₄⁺ and secondary organic carbon (SOC) to PM₂.₅ were observed during the control period, suggesting the important role of secondary transformation. Potential source contribution function (PSCF) of PM₂.₅ showed that the main source regions were potentially located in surrounding cities Hubei Province, but regional transport can't be ignored. Six sources were identified by positive matrix factorization (PMF) for both control and non-control period. The contributions of combustion emissions and vehicle emissions were amplified in the control period, while the contribution of construction dust increased significantly when the control measures ended. Emission reductions contributed more to PM₂.₅ concentration decrease in WH (55%) than that in HS (51%) and HG (49%), which was consistent with the stricter control measures implemented in WH. These results indicated that short-term controls were effective at lowering PM₂.₅ concentration. However, the elevated contributions of secondary aerosols and the influence of regional transport on the study areas also need to be paid attention for air quality improvement in the future.
Mostrar más [+] Menos [-]Outdoor air quality and human health: An overview of reviews of observational studies
2022
Markozannes, Georgios | Pantavou, Katerina | Rizos, Evangelos C. | Sindosi, Ourania Α | Tagkas, Christos | Seyfried, Maike | Saldanha, Ian J. | Hatzianastassiou, Nikos | Nikolopoulos, Georgios K. | Ntzani, Evangelia
The epidemiological evidence supporting putative associations between air pollution and health-related outcomes continues to grow at an accelerated pace with a considerable heterogeneity and with varying consistency based on the outcomes assessed, the examined surveillance system, and the geographic region. We aimed to evaluate the strength of this evidence base, to identify robust associations as well as to evaluate effect variation. An overview of reviews (umbrella review) methodology was implemented. PubMed and Scopus were systematically screened (inception-3/2020) for systematic reviews and meta-analyses examining the association between air pollutants, including CO, NOX, NO₂, O₃, PM₁₀, PM₂.₅, and SO₂ and human health outcomes. The quality of systematic reviews was evaluated using AMSTAR. The strength of evidence was categorized as: strong, highly suggestive, suggestive, or weak. The criteria included statistical significance of the random-effects meta-analytical estimate and of the effect estimate of the largest study in a meta-analysis, heterogeneity between studies, 95% prediction intervals, and bias related to small study effects. Seventy-five systematic reviews of low to moderate methodological quality reported 548 meta-analyses on the associations between outdoor air quality and human health. Of these, 57% (N = 313) were not statistically significant. Strong evidence supported 13 associations (2%) between elevated PM₂.₅, PM₁₀, NO₂, and SO₂ concentrations and increased risk of cardiorespiratory or pregnancy/birth-related outcomes. Twenty-three (4%) highly suggestive associations were identified on elevated PM₂.₅, PM₁₀, O₃, NO₂, and SO₂ concentrations and increased risk of cardiorespiratory, kidney, autoimmune, neurodegenerative, cancer or pregnancy/birth-related outcomes. Sixty-seven (12%), and 132 (24%) meta-analyses were graded as suggestive, and weak, respectively. Despite the abundance of research on the association between outdoor air quality and human health, the meta-analyses of epidemiological studies in the field provide evidence to support robust associations only for cardiorespiratory or pregnancy/birth-related outcomes.
Mostrar más [+] Menos [-]