Refinar búsqueda
Resultados 1-10 de 10
Evaluating the potential of urban areas for bat conservation with citizen science data
2022
Lewanzik, Daniel | Straka, Tanja M. | Lorenz, Julia | Marggraf, Lara | Voigt-Heucke, Silke | Schumann, Anke | Brandt, Miriam | Voigt, Christian C.
Global change, including urbanisation, threatens many of the >1400 bat species. Nevertheless, certain areas within highly urbanised cities may be suitable to harbour bat populations. Thus, managing urban habitats could contribute to bat conservation. Here, we wanted to establish evidence-based recommendations on how to improve urban spaces for the protection of bats. In a team effort with >200 citizen scientists, we recorded bat vocalisations up to six times over the course of 2 years at each of 600 predefined sites in the Berlin metropolitan area. For each species we identified the preferred and non-preferred landscape features. Our results show that artificial light at night (ALAN) had a negative impact on all species. For soprano pipistrelles and mouse-eared bats ALAN had the largest effect sizes among all environmental predictors. Canopy cover and open water were especially important for bat species that forage along vegetation edges and for trawling bats, respectively. Occurrence probability of species foraging in open space decreased with increasing distance to water bodies. On a larger scale, impervious surfaces tended to have positive effects on some species that are specialised on foraging along edge structures. Our study constitutes an important contribution to the growing body of literature showing that despite the many negative impacts of urbanisation on wildlife, urban environments can harbour bat populations if certain conditions are met, such as access to vegetation and water bodies and low levels of ALAN. Our findings are of high relevance for urban planners and conservationists, as they allow inferences on how to manage urban spaces in a bat-friendly way. We recommend limiting ALAN to the minimum necessary and maintaining and creating uninterrupted vegetated corridors between areas with high levels of canopy cover and water bodies, in which ALAN should be entirely avoided.
Mostrar más [+] Menos [-]Effects of artificial light at night on the foraging behavior of an endangered nocturnal mammal
2020
Shier, Debra M. | Bird, Alicia K. | Wang, Thea B.
Modification of nighttime light levels by artificial illumination (artificial light at night; ALAN) is a rapidly increasing form of human disturbance that affects natural environments worldwide. Light in natural environments influences a variety of physiological and ecological processes directly and indirectly and, as a result, the effects of light pollution on species, communities and ecosystems are emerging as significant. Small prey species may be particularly susceptible to ALAN as it makes them more conspicuous and thus more vulnerable to predation by visually oriented predators. Understanding the effects of disturbance like ALAN is especially important for threatened or endangered species as impacts have the potential to impede recovery, but due to low population numbers inherent to at-risk species, disturbance is rarely studied. The endangered Stephens’ kangaroo rat (SKR), Dipodomys stephensi, is a nocturnal rodent threatened by habitat destruction from urban expansion. The degree to which ALAN impacts their recovery is unknown. In this study, we examined the effects of ALAN on SKR foraging decisions across a gradient of light intensity for two types of ALAN, flood and bug lights (756 vs 300 lumen, respectfully) during full and new moon conditions. We found that ALAN decreased probability of resource patch depletion compared to controls. Moreover, lunar illumination, distance from the light source and light type interacted to alter SKR foraging. Under the new moon, SKR were consistently more likely to deplete patches under control conditions, but there was an increasing probability of patch depletion with distance from the source of artificial light. The full moon dampened SKR foraging activity and the effect of artificial lights. Our study underscores that ALAN reduces habitat suitability, and raises the possibility that ALAN may impede the recovery of at-risk nocturnal rodents.
Mostrar más [+] Menos [-]Multisensory pollution: Artificial light at night and anthropogenic noise have interactive effects on activity patterns of great tits (Parus major)
2020
Dominoni, Davide | Smit, Judith A.H. | Visser, Marcel E. | Halfwerk, Wouter
Urbanisation is increasing globally at a rapid pace. Consequently, wild species face novel environmental stressors associated with urban sprawl, such as artificial light at night and noise. These stressors have pervasive effects on the behaviour and physiology of many species. Most studies have singled out the impact of just one of these stressors, while in the real world they are likely to co-occur both temporally and spatially, and we thus lack a clear understanding of the combined effect of anthropogenic stressors on wild species. Here, we experimentally exposed captive male great tits (Parus major) to artificial light at night and 24 h noise in a fully factorial experiment. We then measured the effect of both these stressors on their own and their combination on the amount and timing of activity patterns. We found that both light and noise affected activity patterns when presented alone, but in opposite ways: light increased activity, particularly at night, while noise reduced it, particularly during the day. When the two stressors were combined, we found a synergistic effect on the total activity and the nighttime activity, but an antagonistic effect on daytime activity. The significant interaction between noise and light treatment also differed among forest and city birds. Indeed, we detected a significant interactive effect on light and noise on daytime, nighttime, dusktime and offset of activity of urban birds, but not of forest birds. These results suggest that both artificial light at night and anthropogenic noise can drive changes in activity patterns, but that the specific impacts depend on the habitat of origin. Furthermore, our results demonstrate that co-occurring exposure to noise and light can lead to a stronger impact at night than predicted from the additive effects and thus that multisensory pollution may be a considerable threat for wildlife.
Mostrar más [+] Menos [-]Lighting up our waterways: Impacts of a current mitigation strategy on riparian bats
2022
Hooker, Jack | Lintott, Paul | Stone, Emma
Increasing levels of artificial light at night (ALAN) are a major threat to global biodiversity and can have negative impacts on a wide variety of organisms and their ecosystems. Nocturnal species such as bats are highly vulnerable to the detrimental effects of ALAN. A variety of lighting management strategies have been adopted to minimise the impacts of ALAN on wildlife, however relatively little is known about their effectiveness. Using an experimental approach, we provide the first evidence of negative impacts of part-night lighting (PNL) strategies on bats. Feeding activity of Myotis spp. was reduced along rivers exposed to PNL despite no reduction in overall bat activity. We also provide the first evidence of negative effects of PNL on both feeding and activity for Pipistrellus pipistrellus which has previously been recorded feeding under artificial light. Despite having considerable energy-saving benefits, we outline the potential negative impacts of PNL schemes for bats in riparian habitats. PNL are unlikely to provide desired conservation outcomes for bats, and can potentially fragment important foraging habitats leading to a breakdown of functional connectivity across the landscape. We highlight the potential dichotomy for strategies which attempt to simultaneously address climate change and biodiversity loss and recommend alternative management strategies to limit the impacts of ALAN on biodiversity.
Mostrar más [+] Menos [-]Artificial light at night (ALAN) alters the physiology and biochemistry of symbiotic reef building corals
2020
Levy, Oren | Fernandes de Barros Marangoni, Laura | I. C. Benichou, Jennifer | Rottier, Cécile | Béraud, Eric | Grover, Renaud | Ferrier-Pagès, Christine
Artificial Light at Night (ALAN), which is the alteration of natural light levels as the result of anthropogenic light sources, has been acknowledged as an important factor that alters the functioning of marine ecosystems. Using LEDs light to mimic ALAN, we studied the effect on the physiology (symbiont and chlorophyll contents, photosynthesis, respiration, pigment profile, skeletal growth, and oxidative stress responses) of two scleractinian coral species originating from the Red Sea. ALAN induced the photoinhibition of symbiont photosynthesis, as well as an overproduction of reactive oxygen species (ROS) and an increase in oxidative damage to lipids in both coral species. The extent of the deleterious effects of ALAN on the symbiotic association and coral physiology was aligned with the severity of the oxidative stress condition experienced by the corals. The coral species Sylophora pistillata, which experienced a more severe oxidative stress condition than the other species tested, Turbinaria reniformis, also showed a more pronounced bleaching (loss of symbionts and chlorophyll content), enhanced photoinhibition and decreased photosynthetic rates. Findings of the present study further our knowledge on the biochemical mechanisms underpinning the deleterious impacts of ALAN on scleractinian corals, ultimately shedding light on the emerging threat of ALAN on coral reef ecology. Further, considering that global warming and light pollution will increase in the next few decades, future studies should be taken to elucidate the potential synergetic effects of ALAN and global climate change stressors.
Mostrar más [+] Menos [-]Endogenous cycles, activity patterns and energy expenditure of an intertidal fish is modified by artificial light pollution at night (ALAN)
2019
Pulgar, José | Zeballos, Danae | Vargas Ruiz, Juan Carlos | Aldana, Marcela | Manriquez, Patricio H. | Manriquez, Karen | Quijón, Pedro A. | Widdicombe, Stephen | Anguita, Cristobal | Quintanilla, Diego | Duarte, Cristian
The increase of global light emissions in recent years has highlighted the need for urgent evaluation of their impacts on the behaviour, ecology and physiology of organisms. Numerous species exhibit daily cycles or strong scototaxic behaviours that could potentially be influenced if natural lighting conditions or cycles are disrupted. Artificial Light Pollution at Night (ALAN) stands for situations where artificial light alters natural light-dark cycles, as well as light intensities and wavelengths. ALAN is increasingly recognized as a potential threat to biodiversity, mainly because a growing number of studies are demonstrating its influence on animal behaviour, migration, reproduction and biological interactions. Most of these studies have focused on terrestrial organisms and ecosystems with studies on the effects of ALAN on marine ecosystems being more occasional. However, with the increasing human use and development of the coastal zone, organisms that inhabit shallow coastal or intertidal systems could be at increasing risk from ALAN. In this study we measured the levels of artificial light intensity in the field and used these levels to conduct experimental trials to determine the impact of ALAN on an intertidal fish. Specifically, we measured ALAN effects on physiological performance (oxygen consumption) and behaviour (activity patterns) of “Baunco” the rockfish Girella laevifrons, one of the most abundant and ecologically important intertidal fish in the Southeastern Pacific littoral. Our results indicated that individuals exposed to ALAN exhibited increased oxygen consumption and activity when compared with control animals. Moreover, those fish exposed to ALAN stopped displaying the natural (circatidal and circadian) activity cycles that were observed in control fish throughout the experiment. These changes in physiological function and behaviour could have serious implications for the long-term sustainability of fish populations and indirect impacts on intertidal communities in areas affected by ALAN.
Mostrar más [+] Menos [-]Artificial light at night promotes bottom-up changes in a woodland food chain
2022
Lockett, Martin T. | Rasmussen, Rebecca | Arndt, Stefan K. | Hopkins, Gareth R. | Jones, Therésa M.
Artificial light at night (ALAN) is a recognised disruptor of biological function and ecological communities. Despite increasing research effort, we know little regarding the effect of ALAN on woody plants, including trees, or its indirect effects on their colonising invertebrates. These effects have the potential to disrupt woodland food webs by decreasing the productivity of invertebrates and their secretions, including honeydew and lerps, with cascading effects on other fauna. Here, we cultivated juvenile river red gums (Eucalyptus camaldulensis) for 40 weeks under experimentally manipulated light (ALAN) or naturally dark (control) conditions. To assess direct impacts on tree growth, we took multiple measures of growth at four time periods, and also measured physiological function, biomass and investment in semi-mature trees. To assess experimentally the direct and indirect (tree-mediated) impacts of ALAN on invertebrates, from 19 weeks onwards, we matched and mismatched trees with their original ALAN environments. We colonised trees with a common herbivore of E. camaldulensis, the red gum lerp psyllid (Glycaspis nr. brimblecombei) and then measured the effects of current and historic tree lighting treatment on the psyllid life cycle. Our data revealed direct effects of ALAN on tree morphology: E. camaldulensis trees exposed to ALAN shifted biomass allocation away from roots and into leaves and increased specific leaf area. However, while the intensity of ALAN was sufficient to promote photosynthesis (net carbon gain) at night, this did not translate into variation in tree water status or photosystem adaptation to dim night-time light for ALAN-exposed trees. We found some evidence that ALAN had broad-scale community effects—psyllid nymphs colonising ALAN trees produced more lerps—but we found no other direct or indirect impacts of ALAN on the psyllid life cycle. Our results suggest that trees exposed to ALAN may share morphological responses with trees under dim daylight conditions. Further, ALAN may have significant ‘bottom-up’ effects on Eucalyptus woodland food webs through both trees and herbivores, which may impact higher trophic levels including woodland birds, mammals and invertebrates.
Mostrar más [+] Menos [-]Cloud cover amplifies the sleep-suppressing effect of artificial light at night in geese
2021
van Hasselt, Sjoerd J. | Hut, Roelof A. | Allocca, Giancarlo | Vyssotski, Alexei L. | Piersma, Theunis | Rattenborg, Niels C. | Meerlo, Peter
In modern society the night sky is lit up not only by the moon but also by artificial light devices. Both of these light sources can have a major impact on wildlife physiology and behaviour. For example, a number of bird species were found to sleep several hours less under full moon compared to new moon and a similar sleep-suppressing effect has been reported for artificial light at night (ALAN). Cloud cover at night can modulate the light levels perceived by wildlife, yet, in opposite directions for ALAN and moon. While clouds will block moon light, it may reflect and amplify ALAN levels and increases the night glow in urbanized areas. As a consequence, cloud cover may also modulate the sleep-suppressing effects of moon and ALAN in different directions. In this study we therefore measured sleep in barnacle geese (Branta leucopsis) under semi-natural conditions in relation to moon phase, ALAN and cloud cover. Our analysis shows that, during new moon nights stronger cloud cover was indeed associated with increased ALAN levels at our study site. In contrast, light levels during full moon nights were fairly constant, presumably because of moonlight on clear nights or because of reflected artificial light on cloudy nights. Importantly, cloud cover caused an estimated 24.8% reduction in the amount of night-time NREM sleep from nights with medium to full cloud cover, particularly during new moon when sleep was unaffected by moon light. In conclusion, our findings suggest that cloud cover can, in a rather dramatic way, amplify the immediate effects of ALAN on wildlife. Sleep appears to be highly sensitive to ALAN and may therefore be a good indicator of its biological effects.
Mostrar más [+] Menos [-]Artificial illumination near rivers may alter bat-insect trophic interactions
2019
Russo, Danilo | Cosentino, Francesca | Festa, Francesca | De Benedetta, Flavia | Pejic, Branka | Cerretti, Pierfilippo | Ancillotto, Leonardo
Artificial illumination at night represents an increasingly concerning threat to ecosystems worldwide, altering persistence, behaviour, physiology and fitness of many organisms and their mutual interactions, in the long-term affecting ecosystem functioning. Bats are very sensitive to artificial light at night because they are obligate nocturnal and feed on insects which are often also responsive to lights. Here we tested the effects of LED lighting on prey-predator interactions at riverine ecosystems, using bats and their insect prey as models, and compared bat and insect reactions in terms of bat activity and prey insect abundance and diversity, respectively, on artificially lit vs. unlit nights. Artificial light influenced both insect and bat assemblages in taxon-specific directions: insect abundances increased at lit sites, particularly due to an increase in small dipterans near the light source. Composition of insect assemblages also differed significantly between lit and unlit sites. Total bat activity declined at lit sites, but this change was mainly due to the response of the most abundant species, Myotis daubentonii, while opportunistic species showed no reaction or even an opposite pattern (Pipistrellus kuhlii). We show that artificial lighting along rivers may affect trophic interactions between bats and insects, resulting in a profound alteration of community structure and dynamics.
Mostrar más [+] Menos [-]Artificial Light at Night (ALAN) negatively affects the settlement success of two prominent intertidal barnacles in the southeast Pacific
2021
Many coastal processes are regulated by day/night cycles and are expected to be altered by Artificial Light at Night (ALAN). The goal of this study was to assess the influence of ALAN on the settlement rates of intertidal barnacles. A newly designed settlement plate equipped with a small central LED light source was used to quantify settlement rates in presence/absence of ALAN conditions. “ALAN plates” as well as regular settlement plates were deployed in the mid rocky intertidal zone. Both ALAN and control plates collected early and late settlers of the barnacles Notochthamalus scabrosus and Jehlius cirratus. Early settlers (pre-metamorphosis cyprids) were not affected by ALAN. By contrast, the density of late settlers (post-metamorphosis spats) was significantly lower in ALAN than in control plates for both species, suggesting detrimental ALAN impacts on the settlement process. The new ALAN plates represent an attractive and alternative methodology to study ALAN effects.
Mostrar más [+] Menos [-]