Refinar búsqueda
Resultados 1-10 de 50
Paleotoxicity of petrogenic and pyrogenic hydrocarbon mixtures in sediment cores from the Athabasca oil sands region, Alberta (Canada)
2022
Thomas, Philippe J. | Eickmeyer, David C. | Eccles, Kristin M. | Kimpe, Linda E. | Felzel, Emiel | Brouwer, Abraham | Letcher, Robert J. | Maclean, Bruce D. | Chan, Laurie H.M. | Blais, Jules M.
Despite the economic benefits of the oil and gas industry in Northern Alberta, significant concerns exist regarding the impacts of increased oil production on the environment and human health. Several studies have highlighted increases in the concentrations of polycyclic aromatic compounds (PACs) and other hydrocarbons in the atmosphere, water, soil and sediments, plants, wildlife and fish in the Athabasca Oil Sands Region (AOSR) as a result of oil sands industrial activity. Sediment cores can provide information on the temporal trends of contaminants to the environment and provide important baseline information when monitoring data are absent. Here we combined analytical chemistry and a mammalian cell-based bioassay in dated lake sediment cores to assess paleotoxicity in freshwater systems in the AOSR. Sediment intervals were radiometrically dated and subsequently analysed for PACs. PAC extracts from select dated intervals were used in cell-based bioassays to evaluate their endocrine disrupting properties. We demonstrated spatial and temporal variability in the PAC composition of sediment cores around the AOSR with some of the highest concentrations of PACs detected near oil sands industrial activity north of Fort McMurray (AB) in La Saline Natural Area. Recent sediment had positive enrichment factors across most PAC analytes at this site with heavier pyrogenic compounds such as benz(a)anthracene/chrysene and benzofluoranthene/benzopyrene dominating. Our study is the first to link chemical analysis of sediment cores with biological effect assessments of endocrine activity showing feasibility of extending the usefulness of sediment cores in monitoring programs interested in complex mixture assessments. While we observed no spatial or temporal differences in ERα mediated signaling, AhR CALUX results mirrored those of the chemical analysis, demonstrating the utility of coupling biological effects assessments to historical reconstructions of contaminant inputs to the natural environment.
Mostrar más [+] Menos [-]Integrated analysis of petroleum biomarkers and polycyclic aromatic compounds in lake sediment cores from an oil sands region
2021
Salat, Alexandre P.J. | Eickmeyer, David C. | Kimpe, Linda E. | Hall, Roland I. | Wolfe, Brent B. | Mundy, Lukas J. | Trudeau, Vance L. | Blais, Jules M.
We examined polycyclic aromatic compounds (PACs) and petroleum biomarkers (steranes, hopanes, and terpanes) in radiometrically-dated lake sediment cores from the Athabasca oil sands region (AOSR) and the Peace-Athabasca Delta (PAD) region in Alberta (Canada) to determine whether contributions from petroleum hydrocarbons have changed over time. Two floodplain lakes in the PAD (PAD 30, PAD 31) recorded increased flux of alkylated PACs and increased petrogenic (petroleum-derived) hydrocarbons after ∼1980, coincident with a decline of sediment organic carbon content and a rise of bulk sedimentation rate, likely due to increased Athabasca River flow. A large expansion of upstream oilsands mining, upgrading, and refining may also have contributed to the observed shift to more petrogenic hydrocarbons to sediments since the 1980s. Alkylated PAC flux increased in the floodplain lake analyzed within the AOSR (Saline Lake) since the 1970s–1980s, coincident with a sharp rise in sediment organic carbon content and increased contributions of petrogenic hydrocarbons. These changes identify increased supply of petrogenic PACs occurred as Athabasca River floodwaters waned, and may implicate aerial contributions of petrogenic hydrocarbons from oilsands activity. PACs and petroleum biomarkers (steranes, hopanes, and terpanes) in sediment cores from Saline Lake, PAD 30 and PAD 31 revealed a predominance of petrogenic hydrocarbons in these lakes. In contrast, we recorded minimal petrogenic hydrocarbons in the reference lakes outside the surface minable area of the AOSR and PAD (Mariana Lake and BM11), though we noted slight increases in petrogenic contributions to modern (2010–2016) sediments. We show how a combined analysis of PACs and petroleum biomarkers in sediments is useful to quantify petrogenic contributions to lakes with added confidence and highlight the potential for petroleum biomarkers in lake sediment cores as a novel and effective method to track petroleum hydrocarbons in lake sediment.
Mostrar más [+] Menos [-]Fugitive emissions of polycyclic aromatic compounds from an oil sands tailings pond based on fugacity and inverse dispersion flux calculations
2021
Moradi, Maryam | You, Yuan | Hung, Hayley | Li, James | Park, Richard | Alexandrou, Nick | Moussa, Samar G. | Jantunen, Liisa | Robitaille, Rachelle | Staebler, Ralf
Alberta’s oil sands tailings ponds are suspected to be a source of fugitive emissions of polycyclic aromatic compounds (PACs) to the atmosphere. Here we report, for the first time, fluxes of 6 parent and 21 alkylated PACs based on the measured co-located air and water concentrations using a two-film fugacity-based model (FUG), an inverse dispersion model (DISP) and a simple box model (BOX). Air samples were collected at the Suncor Tailings Pond 2/3 using a high volume air sampler from the “pond” and towards the pond (“non-pond”) directions separately. Mean ∑₂₇PACs in air from the “pond” direction was greater than the “non-pond” direction by a factor of 17. Water-air fugacity ratio of 20 PACs quantifiable in water indicated net volatilization from water. Dispersion and box model results also indicated upward fluxes of 22 PACs. Correlation between the estimated flux results of BOX and DISP model was statistically significant (r = 0.99 and p < 0.05), and correlation between FUG and DISP results ranged from 0.54 to 0.85. In this first-ever assessment of PAC fluxes from tailings pond, the three models confirmed volatilization fluxes of PACs indicating Suncor Tailings Pond 2/3 is a source of PAC emissions to the atmosphere. This study addressed a key data gap identified in the Joint Oil Sands Monitoring Emissions Inventory Compilation Report (Government of Alberta and Canada, 2016) which is the lack of consistent real-world tailings pond fugitive emission monitoring of organic chemicals. Our findings highlight the need for measurements from other tailings ponds to determine their overall contribution in releasing PACs to the atmosphere. This paper presents a practical method for estimating PAC emissions from other tailings ponds, which can provide a better understanding of these fugitive emissions, and thereby help to improve the overall characterization of emissions in the oil sands region.
Mostrar más [+] Menos [-]Polycyclic aromatic compounds in the Canadian Environment: Aquatic and terrestrial environments
2021
Marvin, Christopher H. | Berthiaume, Alicia | Burniston, Deborah A. | Chibwe, Leah | Dove, Alice | Evans, Marlene | Hewitt, L Mark | Hodson, Peter V. | Muir, Derek C.G. | Parrott, Joanne | Thomas, Philippe J. | Tomy, Gregg T.
Polycyclic aromatic compounds (PACs) are ubiquitous across environmental media in Canada, including surface water, soil, sediment and snowpack. Information is presented according to pan-Canadian sources, and key geographical areas including the Great Lakes, the Alberta Oil Sands Region (AOSR) and the Canadian Arctic. Significant PAC releases result from exploitation of fossil fuels containing naturally-derived PACs, with anthropogenic sources related to production, upgrading and transport which also release alkylated PACs. Continued expansion of the oil and gas industry indicates contamination by PACs may increase. Monitoring networks should be expanded, and include petrogenic PACs in their analytical schema, particularly near fuel transportation routes. National-scale roll-ups of emission budgets may not expose important details for localized areas, and on local scales emissions can be substantial without significantly contributing to total Canadian emissions. Burning organic matter produces mainly parent or pyrogenic PACs, with forest fires and coal combustion to produce iron and steel being major sources of pyrogenic PACs in Canada. Another major source is the use of carbon electrodes at aluminum smelters in British Columbia and Quebec. Temporal trends in PAC levels across the Great Lakes basin have remained relatively consistent over the past four decades. Management actions to reduce PAC loadings have been countered by increased urbanization, vehicular emissions and areas of impervious surfaces. Major cities within the Great Lakes watershed act as diffuse sources of PACs, and result in coronas of contamination emanating from urban centres, highlighting the need for non-point source controls to reduce loadings.
Mostrar más [+] Menos [-]Growth and physiological responses of tree seedlings to oil sands non-segregated tailings
2020
Zhang, Wen-Qing | Fleurial, Killian | Sherr, Ira | Vassov, Robert | Zwiazek, Janusz J.
Bitumen recovery from oil sands in northeastern Alberta, Canada produces large volumes of tailings, which are deposited in mining areas that must be reclaimed upon mine closure. A new technology of non-segregated tailings (NST) developed by Canadian Natural Resources Limited (CNRL) was designed to accelerate the process of oil sands fine tailings consolidation. However, effects of these novel tailings on plants used for the reclamation of oil sands mining areas remain to be determined. In the present study, we investigated the effects of NST on seedlings of three species of plants commonly planted in oil sands reclamation sites including paper birch (Betula papyrifera), white spruce (Picea glauca) and green alder (Alnus viridis). In the controlled-environment study, we grew seedlings directly in NST and in the two types of reclamation soils with and without added NST and we measured seedling growth, gas exchange parameters, as well as tissue concentrations of selected elements and foliar chlorophyll. White spruce seedlings suffered from severe mortality when grown directly in NST and their needles contained high concentrations of Na. The growth and physiological processes were also inhibited by NST in green alder and paper birch. However, the addition of top soil and peat mineral soil mix to NST significantly improved the growth of plants, possibly due to a more balanced nutrient uptake. It appears that NST may offer some advantages in terms of site revegetation compared with the traditional oil sands tailings that were used in the past. The results also suggest that, white spruce may be less suitable for planting at reclamation sites containing NST compared with the two studied deciduous tree species.
Mostrar más [+] Menos [-]Cytochrome P450 1A transcript is a suitable biomarker of both exposure and response to diluted bitumen in developing frog embryos
2019
Lara-Jacobo, Linda R. | Willard, Brianna | Wallace, Sarah J. | Langlois, Valerie S.
In order for Alberta's thick bitumen to be transported through pipelines, condensates are added creating a diluted bitumen (dilbit) mixture. Recent pipeline expansion projects have generated concern about potential dilbit spills on aquatic wildlife health. Studies have suggested that polycyclic aromatic compounds (PACs) are toxic to aquatic vertebrates and could potentially also interfere with their endocrine system. The research objectives of this study were to investigate the toxicity of dilbit to developing frog embryos and to identify the molecular mechanisms of action involved. Fertilized embryos of Western clawed frog (Silurana tropicalis) were exposed for 72 h to water accommodated fractions (WAF; 0.7–8.9 μg/L TPACs) and chemically-enhanced WAFs (CEWAF; 0.09–56.7 μg/L TPACs) of Access Western Blend (AWB) and Cold Lake Blend (CLB) dilbits. Both dilbit's CEWAFs significantly increased embryonic mortality and malformation incidence in the highest treatments tested, while WAF treatments led to no visible toxic effects. Increases of the cytochrome P450 1A (cyp1a) mRNA levels were observed for all WAF and CEWAF dilbit treatments suggesting that phase I detoxification is activated in the dilbit-exposed larvae. When exposed to PAC concentrations ranging from 0.09 to 8.9 μg/L, the frogs displayed no observable malformations, but expressed significant increases of cyp1a mRNA levels (2- to 25-fold; indicating a suitable biomarker of exposure); however, when concentrations were of 46.6 μg/L or higher, both malformed frog phenotype and induction of cyp1a mRNA level (>250-fold) were measured (indicating a suitable biomarker of response). The expression of several genes related to cellular detoxification and endocrine disruption were also measured, but were not significantly altered by the treatments. In sum, cyp1a mRNA level is a highly sensitive endpoint to measure subtle molecular changes induced by PAC exposure in the frog embryos and larvae, and data suggest that PAC concentration higher than 46 μg/L would be toxic to the developing S. tropicalis.
Mostrar más [+] Menos [-]Ambient volatile organic compounds (VOCs) in communities of the Athabasca oil sands region: Sources and screening health risk assessment
2018
Bari, Md Aynul | Kindzierski, Warren B.
An investigation of ambient levels and sources of volatile organic compounds (VOCs) and associated public health risks was carried out at two northern Alberta oil sands communities (Fort McKay and Fort McMurray located < 25 km and >30 km from oil sands development, respectively) for the period January 2010–March 2015. Levels of total detected VOCs were comparatively similar at both communities (Fort McKay: geometric mean = 22.8 μg/m³, interquartile range, IQR = 13.8–41 μg/m³); (Fort McMurray: geometric mean = 23.3 μg/m³, IQR = 12.0–41 μg/m³). In general, methanol (24%–50%), alkanes (26%–32%) and acetaldehyde (23%–30%) were the predominant VOCs followed by acetone (20%–24%) and aromatics (∼9%). Mean and maximum ambient concentrations of selected hazardous VOCs were compared to health risk screening criteria used by United States regulatory agencies. The Positive matrix factorization (PMF) model was used to identify and apportion VOC sources at Fort McKay and Fort McMurray. Five sources were identified at Fort McKay, where four sources (oil sands fugitives, liquid/unburned fuel, ethylbenzene/xylene-rich and petroleum processing) were oil sands related emissions and contributed to 70% of total VOCs. At Fort McMurray six sources were identified, where local sources other than oil sands development were also observed. Contribution of aged air mass/regional transport including biomass burning emissions was ∼30% of total VOCs at both communities. Source-specific carcinogenic and non-carcinogenic risk values were also calculated and were below acceptable and safe levels of risk, except for aged air mass/regional transport (at both communities), and ethylbenzene/xylene-rich (only at Fort McMurray).
Mostrar más [+] Menos [-]Comparative histories of polycyclic aromatic compound accumulation in lake sediments near petroleum operations in western Canada
2017
Thienpont, Joshua R. | Desjardins, Cyndy M. | Kimpe, Linda E. | Korosi, Jennifer B. | Kokelj, Steven V. | Palmer, Michael J. | Muir, Derek C.G. | Kirk, Jane L. | Smol, J. P. (John P.) | Blais, Jules M.
We examined the historical deposition of polycyclic aromatic compounds (PACs) recorded in radiometrically-dated lake sediment cores from a small, conventional oil and gas operation in the southern Northwest Territories (Cameron Hills), and placed these results in the context of previously published work from three other important regions of western Canada: (1) the Athabasca oil sands region in Alberta; (2) Cold Lake, Alberta; and (3) the Mackenzie Delta, NT. Sediment PAC records from the Cameron Hills showed no clear changes in either source or concentrations coincident with the timing of development in these regions. Changes were small in comparison to the clear increases in both parent and alkyl-substituted PACs in response to industrial development from the Athabasca region surface mining of oil sands, where parent PAC diagnostic ratios indicated a shift from pyrogenic sources (primarily wood and coal burning) in pre-development sediments to more petrogenically-sourced PACs in modern sediments. Cores near in-situ oil sand extraction operations showed only modest increases in PAC deposition. This work directly compares the history and trajectory of contamination in lake ecosystems in areas of western Canada impacted by the most common types of hydrocarbon extraction activities, and provides a context for assessing the environmental impacts of oil and gas development in the future.
Mostrar más [+] Menos [-]PAH distributions in sediments in the oil sands monitoring area and western Lake Athabasca: Concentration, composition and diagnostic ratios
2016
Evans, Marlene | Davies, Martin | Janzen, Kim | Muir, Derek | Hazewinkel, Rod | Kirk, Jane | de Boer, Dirk
Oil sands activities north of Fort McMurray, Alberta, have intensified in recent years with a concomitant debate as to their environmental impacts. The Regional Aquatics Monitoring Program and its successor, the Joint Canada-Alberta Implementation Plan for Oil Sands Monitoring (JOSM), are the primary aquatic programs monitoring this industry. Here we examine sediment data (collected by Ekman grabs) to investigate trends and sources of polycyclic aromatic hydrocarbons (PAHs), supplementing these data with sediment core studies. Total PAH (ΣPAH) concentrations were highest at Shipyard Lake (6038 ± 2679 ng/g) in the development center and lower at Isadore's Lake (1660 ± 777 ng/g) to the north; both lakes are in the Athabasca River Valley and lie below the developments. ΣPAH concentrations were lower (622–930 ng/g) in upland lakes (Kearl, McClelland) located further away from the developments. ΣPAH concentrations increased at Shipyard Lake (2001–2014) and the Ells River mouth (1998–2014) but decreased in nearshore areas at Kearl Lake (2001–2014) and a Muskeg River (2000–2014) site. Over the longer term, ΣPAH concentrations increased in Kearl (1934–2012) and Sharkbite (1928–2010) Lakes. Further (200 km) downstream in the Athabasca River delta, ΣPAH concentrations (1029 ± 671 ng/g) increased (1999–2014) when %sands were included in the regression model; however, 50 km to the east, concentrations declined (1926–2009) in Lake Athabasca. Ten diagnostic ratios based on anthracene, phenanthrene, fluoranthene, pyrene, benz[a]anthracene, chrysene, indeno[123-cd]pyrene, dibenz[a,h]anthracene, dibenzothiophene and retene were examined to infer spatial and temporal trends in PAH sources (e.g., combustion versus petrogenic) and weathering. There was some evidence of increasing contributions of unprocessed oil sands and bitumen dust to Shipyard, Sharkbite, and Isadore's Lakes and increased combustion sources in the Athabasca River delta. Some CCME interim sediment quality guidelines were exceeded, primarily in Shipyard Lake and near presumed natural bitumen sources.
Mostrar más [+] Menos [-]Total and methyl mercury concentrations in sediment and water of a constructed wetland in the Athabasca Oil Sands Region
2016
Oswald, Claire J. | Carey, Sean K.
In the Athabasca Oil Sands Region in northeastern Alberta, Canada, oil sands operators are testing the feasibility of peatland construction on the post-mining landscape. In 2009, Syncrude Canada Ltd. began construction of the 52 ha Sandhill Fen pilot watershed, including a 15 ha, hydrologically managed fen peatland built on sand-capped soft oil sands tailings. An integral component of fen reclamation is post-construction monitoring of water quality, including salinity, fluvial carbon, and priority pollutant elements. In this study, the effects of fen reclamation and elevated sulfate levels on mercury (Hg) fate and transport in the constructed system were assessed. Total mercury (THg) and methylmercury (MeHg) concentrations in the fen sediment were lower than in two nearby natural fens, which may be due to the higher mineral content of the Sandhill Fen peat mix and/or a loss of Hg through evasion during the peat harvesting, stockpiling and placement processes. Porewater MeHg concentrations in the Sandhill Fen typically did not exceed 1.0 ng L−1. The low MeHg concentrations may be a result of elevated porewater sulfate concentrations (mean 346 mg L−1) and an increase in sulphide concentrations with depth in the peat, which are known to suppress MeHg production. Total Hg and MeHg concentrations increased during a controlled mid-summer flooding event where the water table rose above the ground surface in most of the fen. The Hg dynamics during this event showed that hydrologic fluctuations in this system exacerbate the release of THg and MeHg downstream. In addition, the elevated SO42− concentrations in the peat porewaters may become a problem with respect to downstream MeHg production once the fen is hydrologically connected to a larger wetland network that is currently being constructed.
Mostrar más [+] Menos [-]