Refinar búsqueda
Resultados 1-10 de 49
Human exposure to organochlorine, pyrethroid and neonicotinoid pesticides: Comparison between urban and semi-urban regions of India Texto completo
2021
Anand, Niharika | Chakraborty, Paromita | Ray, Sujata
In developing countries, urban areas may be at greater risk of pesticide exposure compared to semi-urban agricultural regions. To investigate this, concentrations of selected pesticides were measured in 81 human milk samples collected in urban Kolkata and semi-urban Nadia in West Bengal, India. Three classes of pesticides were investigated – legacy organochlorines and emerging pyrethroids and neonicotinoids. The average concentration of the majority of the chemicals (DDT, its metabolites, HCH isomers, bifenthrin, endosulfan), showed a clear urban > semi-urban trend. Compared with previous measurements in other Indian cities and developing nations, current HCH and DDT concentrations in urban Kolkata were high. These chemicals were detected in 100% of the samples in both the urban and the semi-urban region. Also in both regions, the Estimated Daily Intake of DDTs, HCHs, aldrin, dieldrin and the pyrethroid bifenthrin for breastfed infants exceeded the Tolerable Daily Intake in a number of samples. Three pyrethroids were detected in human milk samples in India for the first time. This indicates a shift in the usage pattern of pesticides in India from organochlorines to pyrethroids. These findings may be used to drive targeted regulation of pesticides in developing countries with similar histories of pesticide use.
Mostrar más [+] Menos [-]Exposure of androgen mimicking environmental chemicals enhances proliferation of prostate cancer (LNCaP) cells by inducing AR expression and epigenetic modifications Texto completo
2021
Singh, Vipendra Kumar | Pal, Rajesh | Srivastava, Priyansh | Misra, Gauri | Shukla, Yogeshwer | Sharma, Pradeep Kumar
Exposure to environmental endocrine disrupting chemicals (EDCs) is highly suspected in prostate carcinogenesis. Though, estrogenicity is the most studied behavior of EDCs, the androgenic potential of most of the EDCs remains elusive. This study investigates the androgen mimicking potential of some common EDCs and their effect in androgen-dependent prostate cancer (LNCaP) cells. Based on the In silico interaction study, all the 8 EDCs tested were found to interact with androgen receptor with different binding energies. Further, the luciferase reporter activity confirmed the androgen mimicking potential of 4 EDCs namely benzo[a]pyrene, dichlorvos, genistein and β-endosulfan. Whereas, aldrin, malathion, tebuconazole and DDT were reported as antiandrogenic in luciferase reporter activity assay. Next, the nanomolar concentration of androgen mimicking EDCs (benzo[a]pyrene, dichlorvos, genistein and β-endosulfan) significantly enhanced the expression of AR protein and subsequent nuclear translocation in LNCaP cells. Our In silico studies further demonstrated that androgenic EDCs also bind with epigenetic regulatory enzymes namely DNMT1 and HDAC1. Moreover, exposure to these EDCs enhanced the protein expression of DNMT1 and HDAC1 in LNCaP cells. These observations suggest that EDCs may regulate proliferation in androgen sensitive LNCaP cells by acting as androgen mimicking ligands for AR signaling as well as by regulating epigenetic machinery. Both androgenic potential and epigenetic modulatory effects of EDCs may underlie the development and growth of prostate cancer.
Mostrar más [+] Menos [-]Organochlorine compounds pose health risks to the Qinling Giant Panda (Ailuropoda melanoleuca qinlingensis) Texto completo
2021
Zhao, Yan | Chen, Yiping | Macdonald, David W. | Li, Jun | Ma, Qing-yi
To assess organochlorine compound (OC) contamination, its possible sources, and adverse health impacts on giant pandas, we collected soil, bamboo, and panda fecal samples from the habitat and research center of the Qinling panda (Ailuropoda melanoleuca qinlingensis)—the rarest recognized panda subspecies. The polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) concentrations were comparatively low which suggests that moderate sources of OC pollution currently. OC levels were lower in samples from nature reserve than in those collected from pandas held in captivity, and OC levels within the reserve increased between functional areas in the order: core, buffer and experimental. The distribution patterns, and correlation analyses, combined with congener distributions suggested PCBs and OCPs originated from similar sources, were dispersed by similar processes, being transported through atmosphere and characterized by historical residues. Backward trajectory analyses results, and detected DRINs (aldrin, dieldrin, endrin and isodrin) both suggest long-range atmospheric transport of pollution source. PCBs pose potential cancer risk, and PCB 126 was the most notable toxicant as assessed be the high carcinogenic risk index. We provide data for health risk assessment that can guide the identification of priority congeners, and recommend a long-term monitoring plan. This study proposes an approach to ecotoxicological threats whereby giant pandas may be used as sentinel species for other threatened or endangered mammals. By highlighting the risks of long-distance transmission of pollutants, the study emphasizes the importance of transboundary cooperation to safeguard biodiversity.
Mostrar más [+] Menos [-]Historical and post-ban releases of organochlorine pesticides recorded in sediment deposits in an agricultural watershed, France Texto completo
2021
Gardes, Thomas | Portet-Koltalo, Florence | Debret, Maxime | Copard, Yoann
Agricultural use of organochlorine pesticides (OCPs) increased during the twentieth century but many of them have been progressively banned several decades after their introduction. Nevertheless, these lipophilic chemical compounds may persist in soils and sediments. From sediment deposits, it is possible to reconstruct the chronology of OCP releases in relation to former applications through time. Nevertheless, long-term fate of OCPs i.e. source, transfer, and storage through the watershed, is also related to the OCPs-sediment characteristics interactions, and our study showed the significant links between OCPs and labile or refractory organic matter. From sediment cores collected in a mainly agricultural watershed, the Eure River watershed (France), aldrin and lindane widespread applications during the 1950s–1970s have been recorded. While lindane applications declined after that date, according to the temporal trend of the stable isomer of hexachlorocyclohexane (β-HCH), α-, and γ-HCH have been recorded at significant levels in the 2000s, suggesting first local post-ban applications. Nevertheless, the relationships between these OCPs and labile organic matter resulted in an overestimation of the post-ban releases. Also, the detection of stable metabolites of dichlorodiphenyltrichloroethane (DDT) (i.e. 4,4′-DDE) and heptachlor (i.e. heptachlor epoxide) several decades after their ban, revealed the role of old deep soils erosion in the chronology of OCP releases and thus the reemergence of stable transformation products from historical OCPs.
Mostrar más [+] Menos [-]Reductions in fish-community contamination following lowhead dam removal linked more to shifts in food-web structure than sediment pollution Texto completo
2017
Davis, Robert P. | Sullivan, Mažeika | Stefanik, Kay C.
Recent increases in dam removals have prompted research on ecological and geomorphic river responses, yet contaminant dynamics following dam removals are poorly understood. We investigated changes in sediment concentrations and fish-community body burdens of mercury (Hg), selenium (Se), polychlorinated biphenyls (PCB), and chlorinated pesticides before and after two lowhead dam removals in the Scioto and Olentangy Rivers (Columbus, Ohio). These changes were then related to documented shifts in fish food-web structure. Seven study reaches were surveyed from 2011 to 2015, including controls, upstream and downstream of the previous dams, and upstream restored vs. unrestored. For most contaminants, fish-community body burdens declined following dam removal and converged across study reaches by the last year of the study in both rivers. Aldrin and dieldrin body burdens in the Olentangy River declined more rapidly in the upstream-restored vs. the upstream-unrestored reach, but were indistinguishable by year three post dam removal. No upstream-downstream differences were observed in body burdens in the Olentangy River, but aldrin and dieldrin body burdens were 138 and 148% higher, respectively, in downstream reaches than in upstream reaches of the Scioto River following dam removal. The strongest relationships between trophic position and body burdens were observed with PCBs and Se in the Scioto River, and with dieldrin in the Olentangy River. Food-chain length – a key measure of trophic structure – was only weakly related to aldrin body burdens, and unrelated to other contaminants. Overall, we demonstrate that lowhead dam removal may effectively reduce ecosystem contamination, largely via shifts in fish food-web dynamics versus sediment contaminant concentrations. This study presents some of the first findings documenting ecosystem contamination following dam removal and will be useful in informing future dam removals.
Mostrar más [+] Menos [-]The distribution of organochlorine pesticides in sediments from iSimangaliso Wetland Park: Ecological risks and implications for conservation in a biodiversity hotspot Texto completo
2017
Buah-Kwofie, Archibold | Humphries, Marc S.
The iSimangaliso Wetland Park World Heritage site, located on the east coast of South Africa, spans ∼3300 km2 and constitutes the largest protected estuarine environment for hippopotami, crocodiles and aquatic birds in Africa. Given the ecological importance of this site and continued use of organochlorine pesticides (OCPs) in the region, this study focused on the nature, distribution and potential sources of organochlorine contamination within iSimangaliso Wetland Park. OCPs were widely distributed in surface sediment samples obtained from the four main Ramsar wetland systems within the park (Lake St Lucia, Mkhuze, Lake Sibaya and Kosi Bay). ∑HCH and ∑DDT were the dominant contaminants detected with concentrations in the range of 26.29–282.5 ng/g and 34.49–262.4 ng/g, respectively. ∑DDT concentrations revealed a distinctive gradient, with significantly higher concentrations at Kosi Bay and Lake Sibaya attributed to the application of DDT for malaria control. p,p'-DDE and p,p'-DDD were the dominant isomers detected, but the detection of p,p'-DDT in a number of samples reflects recent inputs of technical DDT. Highest concentrations of HCH, endosulfan and heptachlor were detected in sediments from Mkhuze and reflect the substantial residue load these wetlands receive from agricultural activities within the catchment area. Isomeric compositions indicate that endosulfan and heptachlor residues are derived mainly from historical application, while inputs of HCH, aldrin and endrin could be attributed to more recent usage at several sites. OCP sediment concentrations from iSimangaliso represent the highest yet recorded in South Africa and some of the highest reported globally this century. Sediments found within the lakes and wetlands of iSimangaliso represent large reservoirs of contaminants that pose ecotoxicological threats to this globally important biodiversity hotspot. Detailed investigation into the bioaccumulation and toxicological risks of OCPs within the wetland park is urgently required.
Mostrar más [+] Menos [-]Organochlorines in the Vaccarès Lagoon trophic web (Biosphere Reserve of Camargue, France) Texto completo
2009
Roche, H. | Vollaire, Y. | Persic, A. | Buet, A. | Oliveira-Ribeiro, C. | Coulet, E. | Banas, D. | Ramade, F.
During a decade (1996-2006), ecotoxicological studies were carried out in biota of the Vaccarès Lagoon (Biosphere Reserve in Rhone Delta, France). A multicontamination was shown at all levels of the trophic web due to a direct bioconcentration of chemical from the medium combined with a food transfer. Here, the pollutants investigated were organochlorines, among which many compounds banned or in the course of prohibition (or restriction) (PCB, lindane, pp'-DDE, dieldrin, aldrin, heptachlor, endosulfan ...) and some substances likely still used in the Rhone River basin (diuron, fipronil). The results confirmed the ubiquity of contamination. It proves to be chronic, variable and tends to regress; however contamination levels depend on the trophic compartment. A biomagnification process was showed. A comparison of investigation methods used in other Mediterranean wetlands provides basis of discussion, and demonstrates the urgent need of modelling to assess the ecotoxicological risk in order to improve the management of such protected areas. The Vaccarès Lagoon trophic web biomagnifies organochlorine pollutants.
Mostrar más [+] Menos [-]A large geographic-scale characterization of organochlorine pesticides (OCPs) in surface sediments and multiple aquatic foods of inland freshwater aquaculture ponds in China: Co-occurrence, source and risk assessment Texto completo
2022
Chen, Lu | Qian, Yong-Zhong | Jia, Qi | Weng, Rui | Zhang, Xinglian | Li, Yun | Qiu, Jing
Inland freshwater aquaculture ponds (IFAPs) represent the key component of the global lentic freshwater environment and are increasingly important for global aquaculture production, yet the occurrence of organochlorine pesticides (OCPs) in these pond systems remains largely unknown. Here, we characterized the residual concentrations of 19 individual OCPs in sediments and in cultured fish and crustacean species (crabs, shrimp, crayfish and lobster), which were on-spot sampled from the IFAPs at a large region-scale in China. The total OCP levels in sediments varied dramatically between regions. Crabs presented the greatest OCP contamination among the studied species. Dichlorodiphenyltrichloroethanes (DDTs) was the dominating contaminant in sediments and crabs and its stable degradation products 4,4′-DDE and 4,4′-DDD were co-occurrent between these two compartments. The diagnostic ratio analysis indicated fresh inputs of DDTs, lindane and aldrin in multiple regions, which may be resulted from agricultural soil erosion, surface runoff and local anthropogenic activities. Ecological impacts of these pesticides could be expected at some sites due to their levels in sediments above the risk level. Risk assessment based on the OCP levels corrected by the cooking loss revealed that daily consumption of the IFAPs-derived aquatic foods may pose carcinogenic risks in humans.
Mostrar más [+] Menos [-]Alterations of cytochrome P450 and the occurrence of persistent organic pollutants in tilapia caged in the reservoirs of the Iguaçu River Texto completo
2018
Yamamoto, F.Y. | Diamante, G.D. | Santana, M.S. | Santos, D.R. | Bombardeli, R. | Martins, C.C. | Oliveira Ribeiro, C.A. | Schlenk, D.
Environmental chemicals originating from human activities, such as persistent organic pollutants (POPs), may interfere with the endocrine system of aquatic organisms. The effect of these chemicals on biota and human populations is of high public concern but remains poorly understood, especially in aquatic environments of South America. The aim of this study was to investigate the bioavailability of POPs and the related effects in caged male tilapia (Oreochromis niloticus) in four cascading reservoirs of the Iguaçu River, Southern Brazil. POPs including organochlorine pesticides (OCPs), polychlorinated biphenyl (PCBs), and polybrominated diphenyl ethers (PBDEs) were determined in the reservoir water and tissue samples of tilapia after two months of exposure. The PCB levels in water (14.7 ng L−1) were 14 times higher than the limits permitted by the Brazilian legislation in the Salto Santiago (SS) reservoir. Similarly, concentrations of aldrin and its metabolites (6.05 ng L−1) detected in the water sample of the Salto Osório (SO) reservoir were also above the permitted limits. RT-qPCR analysis revealed different transcript levels of cytochrome P450 enzymes (CYP1A and CYP3A) in the liver among the four groups, with induced activity in tilapia from the SS reservoir. Quantification of the CYP3A mRNA expression and catalytic activity showed higher values for fish caged at the SS reservoir. The fish from this site also had a higher number of eosinophils observed in the testes. Although overt measurements of endocrine disruption were not observed in caged fish, alteration of CYP enzymes with co-occurrence of organochlorine contaminants in water may suggest bioavailability of contaminants from agricultural sources to biota. Additional studies with feral or caged animals for a longer duration may be necessary to evaluate the risks of the waterways to humans and wildlife.
Mostrar más [+] Menos [-]Depth-distribution, possible sources, and toxic risk assessment of organochlorine pesticides (OCPs) in different river sediment cores affected by urbanization and reclamation in a Chinese delta Texto completo
2017
Wang, Wei | Bai, Junhong | Zhang, Guangliang | Wang, Xin | Jia, Jia | Cui, Baoshan | Liu, Xinhui
Sediment cores were collected in urban (0–50 cm), rural (0–40 cm) and reclamation-affected river (0–40 cm) environments in the Pearl River Delta. Concentrations of 16 organochlorine pesticides (OCPs) were determined in all collected samples to identify the depth-distribution, possible sources and ecotoxicological risks of OCPs in river sediments affected by urbanization and reclamation in a Chinese delta. The results showed that the top 10 cm of rural river sediments had slightly lower concentrations of the 16 OCPs compared to urban and reclamation-affected rivers, whereas the 30–40 cm sediment layers in the rural river showed higher levels of the 16 OCPs. However, higher OCPs levels were observed in the 20–30 cm sediment layers in the urban river than in the rural and reclamation-affected rivers. The principal OCPs in most deeper sediment layers were hexachlorobezene (HCB), the combination of aldrin, endrin and dieldrin (ΣDRINs) and the combination of α-HCH, β-HCH and γ-HCH (ΣHCHs). The predominant OCPs in surface sediments were HCB, ΣDRINs and the combination of p,p’-DDD, o,p’-DDT, p,p’-DDT and p,p’-DDE (ΣDDTs). Generally, OCP concentrations decreased with depth along sediment profiles at most sampling sites in the three types of rivers. The source analyses indicated that some sampling sites were still suffering from the recent use of hexachlorocyclohexanes (HCHs), dichlorodiphenyltrichloroethanes (DDTs) and aldrin. According to the soil quality thresholds of China, the levels of HCHs and DDTs at most sampling sites were below class Ⅰ criteria. Based on the sediment quality guideline quotient (SQGQ), the combined ecotoxicological risk of OCPs (γ-HCH, dieldrin, p,p'-DDD, p,p'-DDE and p,p'-DDT) in surface sediments (0–10 cm) was higher than deeper sediments, and the rural river sediments exhibited a higher combined ecotoxicological risk than the sediments in urban and reclamation-affected rivers.
Mostrar más [+] Menos [-]