Refinar búsqueda
Resultados 1-10 de 284
Comparison of the efficiency and microbial mechanisms of chemical- and bio-surfactants in remediation of petroleum hydrocarbon
2022
Zhuang, Xuliang | Wang, Yaxin | Wang, Haoyu | Dong, Yuzhu | Li, Xianglong | Wang, Shijie | Fan, Haonan | Wu, Shanghua
Surfactant-enhanced remediation (SER) is one of the most effective methods for petroleum hydrocarbon-contaminated sites compared to single physical and chemical methods. However, biosurfactants are not as commonly used as chemical surfactants, and the actual remediation effects and related mechanisms remain undefined. Therefore, to comprehensively compare the remediation effects and biological mechanisms of biosurfactants and chemical surfactants, soil column leaching experiments including two biosurfactants (rhamnolipids and lipopeptide) and three commercially used chemical surfactants (Tween 80, Triton X-100, and Berol 226SA) were conducted. After seven days of leaching, rhamnolipids exhibited the highest petroleum hydrocarbon removal rate of 61.01%, which was superior to that of chemical surfactants (11.73–18.75%) in n-alkanes C10–C30. Meanwhile, rhamnolipids exhibited a great degradation advantage of n-alkanes C13–C28, which was 1.22–30.55 times that of chemical surfactants. Compared to chemical surfactants, biosurfactants significantly upregulated the soil's biological functions, including soil conductivity (80.90–155.56%), and soil enzyme activities of lipase (90.31–497.10%), dehydrogenase (325.00–655.56%), core enzyme activities of petroleum hydrocarbon degradation, and quorum sensing between species. Biosurfactants significantly changed the composition of Pseudomonas, Citrobacter, Acidobacteriota, and Enterobacter at the genus level. Meanwhile, chemical surfactants had less influence on the bacterial community and interactions between species. Moreover, the biosurfactants enhanced the microbial interactions and centrality of petroleum hydrocarbon degraders in the community based on the network. Overall, this work provides a systematic comparison and understanding of the chemical- and bio-surfactants used in bioremediation. In the future, we intend to apply biosurfactants to practical petroleum hydrocarbon-contaminated fields to observe realistic remediation effects and compare their functional mechanisms.
Mostrar más [+] Menos [-]Characterization and biodegradability assessment of water-soluble fraction of oily sludge using stir bar sorptive extraction and GCxGC-TOF MS
2022
Chand, Priyankar | Dutta, Suryendu | Mukherji, Suparna
Percolation of water through oily sludge during storage and handling of the sludge can cause soil and groundwater contamination. In this study, oily sludge from a refinery was equilibrated with water to obtain the water-soluble fraction (WSF) of oily sludge. The WSF had dissolved organic carbon (DOC) of 166 mg/L. Human cell line-based toxicity assay revealed IC₅₀ of 41 mg/L indicating its toxic nature. The predominant compounds in WSF of oily sludge included isomers of methyl, dimethyl and trimethyl quinolines and naphthalenes along with phenol derivatives and other polynuclear aromatic hydrocarbons (PAHs). Biodegradation of WSF of oily sludge was studied using a consortium of Rhodococcus ruber, Bacillus sp. and Bacillus cereus isolated from the refinery sludge. The consortium of the three strains resulted in 70% degradation over 15 days with a first-order degradation rate of 0.161 day⁻¹. Further analysis of the WSF was performed using the stir-bar sorptive extraction (SBSE) followed by GCxGC-TOF MS employing a PDMS Twister. The GCxGC analysis showed that Bacillus cereus was capable of degrading the quinoline, phenol and naphthalene derivatives in WSF of oily sludge at a faster rate compared to pyridine and benzoquinoline derivatives. Quinoline, phenol, biphenyl, naphthalene, pyridine and benzoquinolines derivatives in the WSF of oily sludge were reduced by 87%, 92%, 88%, 77%, 40% and 62%, respectively with respect to the controls. The WSF of oily sludge contained, n-alkanes, ranging from n-C12 to n-C18 which were removed within 2 days of biodegradation.
Mostrar más [+] Menos [-]Latitudinal difference in the molecular distributions of lipid compounds in the forest atmosphere in China
2022
Zhang, Donghuan | Ren, Hong | Hu, Wei | Wu, Libin | Ren, Lujie | Deng, Junjun | Zhang, Qiang | Sun, Yele | Wang, Zifa | Kawamura, Kimitaka | Fu, Pingqing
Lipids are important biogenic markers to indicate the sources and chemical process of aerosol particles in the atmosphere. To better understand the influences of biogenic and anthropogenic sources on forest aerosols, total suspended particles (TSP) were collected at Mt. Changbai, Shennongjia, and Xishuangbanna that are located at different climatic zones in northeastern, central and southwestern China. n-Alkanes, fatty acids and n-alcohols were detected in the forest aerosols based on gas chromatography-mass spectrometry. The total concentrations of aliphatic compounds ranged from 15.3 ng m⁻³ to 566 ng m⁻³, and fatty acids were the most abundant (44–95%) followed by n-alkanes and n-alcohols. Low molecular weight- (LFAs) and unsaturated fatty acids (UnFAs) showed diurnal variation with higher concentrations during the nighttime in summer, indicating the potential impact from microbial activities on forest aerosols. The differences of oleic acid (C₁₈:₁) and linoleic acid (C₁₈:₂) concentrations between daytime and nighttime increased at lower latitude, indicating more intense photochemical degradation occurred at lower latitude regions. High levels of n-alkanes during daytime in summer with higher values of carbon preference indexes, combining the strong odd carbon number predominance with a maximum at C₂₇ or C₂₉, implied the high contributions of biogenic sources, e.g., higher plant waxes. In contrast, higher concentrations of low molecular weight n-alkanes were detected in winter forest aerosols. Levoglucosan showed a positive correlation (R² > 0.57) with high- and low molecular weight aliphatic compounds in Mt. Changbai, but such a correlation was not observed in Shennongjia and Xishuangbanna. These results suggest the significant influence of biomass burning in Mt. Changbai, and fossil fuel combustion might be another important anthropogenic source of forest aerosols. This study adds useful information to the current understanding of forest organic aerosols at different geographical locations in China.
Mostrar más [+] Menos [-]Size−resolved source apportionment of particulate matter from a megacity in northern China based on one-year measurement of inorganic and organic components
2021
Tian, Yingze | Harrison, Roy M. | Feng, Yinchang | Shi, Zongbo | Liang, Yongli | Li, Yixuan | Xue, Qianqian | Xu, Jingsha
This research apportioned size-resolved particulate matter (PM) contributions in a megacity in northern China based on a full year of measurements of both inorganic and organic markers. Ions, elements, carbon fractions, n-alkanes, polycyclic aromatic hydrocarbons (PAHs), hopanes and steranes in 9 p.m. size fractions were analyzed. High molecular weight PAHs concentrated in fine PM, while most other organic compounds showed two peaks. Both two-way and three-way receptor models were used for source apportionment of PM in different size ranges. The three-way receptor model gave a clearer separation of factors than the two-way model, because it uses a combination of chemical composition and size distributions, so that factors with similar composition but distinct size distributions (like more mature and less mature coal combustion) can be resolved. The three-way model resolved six primary and three secondary factors. Gasoline vehicles and coal and biomass combustion, nitrate and high relative humidity related secondary aerosol, and resuspended dust and diesel vehicles (exhaust and non-exhaust) are the top two contributors to pseudo-ultrafine (<0.43 μm), fine (0.43–2.1 μm) and coarse mode (>2.1 μm) PM, respectively. Mass concentration of PM from coal and biomass combustion, industrial emissions, and diesel vehicle sources showed a bimodal size distribution, but gasoline vehicles and resuspended dust exhibited a peak in the fine and coarse mode, separately. Mass concentration of sulphate, nitrate and secondary organic aerosol exhibited a bimodal distribution and were correlated with temperature, indicating strong photochemical processing and repartitioning. High relative humidity related secondary aerosol was strongly associated with size shifts of PM, NO₃⁻ and SO₄²⁻ from the usual 0.43–0.65 μm to 1.1–2.1 μm. Our results demonstrated the dominance of primary combustion sources in the <0.43 μm particle mass, in contrast to that of secondary aerosol in fine particle mass, and dust in coarse particle mass in the Northern China megacity.
Mostrar más [+] Menos [-]Spatial variation of short- and medium-chain chlorinated paraffins in ambient air across Australia
2020
Mourik, L. M. van | Wang, Xianyu | Paxman, Chris | Leonards, Pim E.G. | Wania, Frank | Boer, Jacob de | Mueller, Jochen F.
Atmospheric levels of chlorinated paraffins (CPs) at five remote, six rural and four urban sites in Australia were measured using XAD-2 passive air samplers (XAD-PAS). While long-chain CP (LCCP, C>₁₇) levels were below method detection limits (MDLs), short-chain CPs (SCCPs, C₁₀₋₁₃) and, for the first time, medium-chain CPs (MCCPs, C₁₄₋₁₇) and CPs with a carbon chain length of nine (CP–C9) were found at many sites (88%, 81% and 88%, respectively) across the Australian continent, representing a range of environmental conditions. Applying preliminary sampling rates of the XAD-PAS for CPs, gaseous CP levels in Australian air were <MDL-1.3 and <MDL-1.8 ng/m³ for ΣSCCPs and ΣMCCPs, respectively, with a significant decreasing trend from more densely to less densely populated areas. Atmospheric median levels in this study (0.37 and 0.47 ng/m³ for SCCPs and MCCPs, respectively) were at the lower end of the median range (0.32–10 and 3.0–4.2 ng/m³ for SCCPs and MCCPs, respectively) reported for CPs at predominantly urban or industrial sites elsewhere (apart from China and extremely remote sites such as Antarctica). Principal component analysis matched the SCCP and MCCP congener group patterns in samples with those found in commercial mixtures, indicating a prevalence of less chlorinated congener groups in the Australian atmosphere. Information about the Australian production, use and disposal of CPs as well as their levels in other environmental matrices, including humans, is needed for assessing their emissions, behaviour, fate and potential exposure.
Mostrar más [+] Menos [-]Occurrence and weathering of petroleum hydrocarbons deposited on the shoreline of the North Saskatchewan River from the 2016 Husky oil spill
2020
Yang, Zeyu | Shah, Keval | Laforest, Sonia | Hollebone, Bruce P. | Situ, Jane | Crevier, Charlotte | Lambert, Patrick | Brown, Carl E. | Yang, Chun
Following the 16TAN Husky oil spill along the North Saskatchewan River (NSR), the occurrence and natural attenuation of the petroleum hydrocarbons were assessed by analyzing the littoral zone sediments/oil debris collected from July 2016 to October 2017. Husky oil-free, mixed sediment-Husky oil, and Husky oil debris samples were identified for all the collected samples. Shoreline sediments were contaminated by mixed biogenic, pyrogenic and petrogenic inputs prior to the spill. Oil stranded on the shoreline of NSR was moved or buried due to the very dynamic conditions of the shoreline, or cleaned through a series of cleanup activities after the spill. Most normal alkanes were naturally weathered, whereas most of the branched alkanes and all of the saturated petroleum biomarkers remained. Some lighter molecular weight (e.g., 2 to 3-ring) polycyclic aromatic hydrocarbons (PAHs) were lost rapidly after the spill, whereas sulfur containing components, e.g., dibenzothiophenes and benzonaphthothiiophenes, and those having a heavier molecular weight did not change markedly even 15 months post-spill. Similarly, some light hydrocarbons (e.g., <C₁₀) were lost over the first kilometers from the point of entry (POE), while heavier hydrocarbons did not show any major differences away from the POE. Very large inter-site and inter-survey discrepancies were found for samples. Evaporation into the air and dissolution into water, combined with biodegradation, were together or independently the main contributors to the loss of the light molecular hydrocarbons.
Mostrar más [+] Menos [-]Sorption of dispersed petroleum hydrocarbons by activated charcoals: Effects of oil dispersants
2020
Ji, Haodong | Xie, Wenbo | Liu, Wen | Liu, Xiaona | Zhao, Dongye
Marine oil spill often causes contamination of drinking water sources in coastal areas. As the use of oil dispersants has become one of the main practices in remediation of oil spill, the effect of oil dispersants on the treatment effectiveness remains unexplored. Specifically, little is known on the removal of dispersed oil from contaminated water using conventional adsorbents. This study investigated sorption behavior of three prototype activated charcoals (ACs) of different particle sizes (4–12, 12–20 and 100 mesh) for removal of dispersed oil hydrocarbons, and effects of two model oil dispersants (Corexit EC9500A and Corexit EC9527A). The oil content was measured as n-alkanes, polycyclic aromatic hydrocarbons (PAHs), and total petroleum hydrocarbons (TPHs). Characterization results showed that the smallest AC (PAC100) offered the highest BET surface area of 889 m2/g and pore volume of 0.95 cm3/g (pHPZC = 6.1). Sorption kinetic data revealed that all three ACs can efficiently adsorb Corexit EC9500A and oil dispersed by the two dispersants (DWAO-I and DWAO-II), and the adsorption capacity followed the trend: PAC100 > GAC12 × 20 > GAC4 × 12. Sorption isotherms confirmed PAC100 showed the highest adsorption capacity for dispersed oil in DWAO-I with a Freundlich KF value of 10.90 mg/g∙(L/mg)1/n (n = 1.38). Furthermore, the presence of Corexit EC9500A showed two contrasting effects on the oil sorption, i.e., adsolubilization and solubilization depending on the dispersant concentration. Increasing solution pH from 6.0 to 9.0 and salinity from 2 to 8 wt% showed only modest effect on the sorption. The results are useful for effective treatment of dispersed oil in contaminated water and for understanding roles of oil dispersants.
Mostrar más [+] Menos [-]Spatial distribution and profile of atmospheric short-chain chlorinated paraffins in the Yangtze River Delta
2020
Niu, Shan | Chen, Ruiwen | Zou, Yun | Dong, Liang | Hai, Reti | Huang, Yeru
Research on the atmospheric occurrence of short chain chlorinated paraffins (SCCPs) in industrialized areas is scarce. In this study, we investigated the concentrations, profile, and spatial distribution of SCCPs in the highly industrialized and developed areas of the Yangtze River Delta (YRD) in China using polyurethane foam passive air samplers. Sampling was performed during two separate periods in 2011. The concentrations of atmospheric SCCPs ranged from 6.1 to 63 ng m⁻³ in summer and 6.2–42 ng m⁻³ in winter. The C₁₀ and C₁₁ groups were the predominant carbon groups in all the samples. Different congener patterns between summer and winter were found, indicating that congeners in the air in winter may be influenced by local and external sources. The highest level of SCCPs was found in Suzhou, which is a highly industrialized area with many manufactories including electronic industries and plastic factories. Higher levels of SCCPs were found in the air than polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), and polybrominated diphenyl ether (PBDEs), suggesting that the production and use of SCCPs were much higher than prohibited or restricted persistent organic pollutants (e.g., PCBs, OCPs, and PBDEs). Future studies should investigate the different sources of atmospheric SCCPs by conducting a comprehensive assessment of SCCP exposure.
Mostrar más [+] Menos [-]Assessment of pops contaminated sites and the need for stringent soil standards for food safety for the protection of human health
2019
Weber, R. | Bell, L. | Watson, A. | Petrlik, J. | Paun, M.C. | Vijgen, J.
Persistent organic pollutants (POPs) including PCDD/Fs, PCBs and organochlorine pesticides (OCPs) are among the most important and hazardous pollutants of soil. Food producing animals such as chicken, beef, sheep and goats can take up soil while grazing or living outdoors (free-range) and this can result in contamination.In recent decades, large quantities of brominated flame retardants such as polybrominated diphenyl ethers (PBDEs), short-chain chlorinated paraffins (SCCPs) and per- and polyfluorinated alkylated substances (PFAS) have been produced and released into the environment and this has resulted in widespread contamination of soils and other environmental matrices. These POPs also bioaccumulate and can contaminate food of animal origin resulting in indirect exposure of humans.Recent assessments of chicken and beef have shown that surprisingly low concentrations of PCBs and PCDD/Fs in soil can result in exceedances of regulatory limits in food. Soil contamination limits have been established in a number of countries for PCDD/Fs but it has been shown that the contamination levels which result in regulatory limits in food (the maximum levels in the European Union) being exceeded, are below all the existing soil regulatory limits. ‘Safe’ soil levels are exceeded in many areas around emission sources of PCDD/Fs and PCBs. On the other hand, PCDD/F and dioxin-like PCB levels in soil in rural areas, without a contamination source, are normally safe for food producing animals housed outdoors resulting in healthy food (e.g. meat, eggs, milk).For the majority of POPs (e.g. PBDEs, PFOS, PFOA, SCCP) no regulatory limits in soils exist.There is, therefore, an urgent need to develop appropriate and protective soil standards minimising human exposure from food producing animals housed outdoors. Furthermore, there is an urgent need to eliminate POPs pollution sources for soils and to control, secure and remediate contaminated sites and reservoirs, in order to reduce exposure and guarantee food safety.
Mostrar más [+] Menos [-]The atmospheric transport and pattern of Medium chain chlorinated paraffins at Shergyla Mountain on the Tibetan Plateau of China
2019
Wu, Jing | Cao, Dandan | Gao, Wei | Lv, Kun | Liang, Yong | Fu, Jianjie | Gao, Yan | Wang, Yawei | Jiang, Guibin
Large amounts of short chain and medium chain chlorinated paraffins (SCCPs and MCCPs) are released into the environment during production and usage. However, compared to SCCPs, there is a significant lack of attention for MCCPs. In this work, 83 air samples, collected between 2012 and 2015 from the Tibetan Plateau, were analyzed to investigate the airborne levels and distributions of MCCPs, further to evaluate their potential long-range transport behavior on the alpine area. The total air MCCP concentrations at Shergyla Mountain and Lhasa were between 50 and 690 pg/m3 and 800–6700 pg/m3, respectively. At Shergyla Mountain, MCCP concentrations in the air appeared an increasing trend with altitude, which indicated that MCCPs could potentially possess the ability of “mountain cold trapping”. C14 and C15 congener groups were the dominant homologue groups. The mountain contamination potential (MCP) of different congener groups is closely related to their equilibrium partitioning coefficients between octanol and air (KOA), and water and air (KWA). Increasing MCCPs levels might be a potential threat to the environment and human exposure.
Mostrar más [+] Menos [-]