Refinar búsqueda
Resultados 1-10 de 21
2,2′,4,4′-tetrabromodiphenyl ether induces germ cell apoptosis through oxidative stress by a MAPK-mediated p53-independent pathway
2018
You, Xinyue | Xi, Jing | Liu, Weiying | Cao, Yiyi | Tang, Weifeng | Zhang, Xinyu | Yu, Yingxin | Luan, Yang
2,2′,4,4′-Tetrabromodiphenyl ether (BDE-47), a representative congener of polybrominated diphenyl ethers in the environment, is known to have reproductive toxicity. However, the underlying mechanisms remain to be clarified, especially in in vivo systems. In the present study, we employed Caenorhabditis elegans to study the effects of BDE-47 on reproduction. Our results showed that BDE-47 impaired worm fecundity and induced germ cell apoptosis. To elucidate the mechanisms, DNA damage and oxidative stress induction were investigated by determining the numbers of foci formation in transgenic worms expressing HUS-1::GFP and the levels of reactive oxygen species, respectively. We found that BDE-47 induced oxidative stress but not DNA damage, and treatment with the antioxidant, N-acetyl-L-cysteine, completely abrogated BDE-47-induced germ cell apoptosis. In addition, the apoptosis was blocked in mutants carrying mek-1, sek-1 or abl-1 loss-of-function alleles, but not in the p53/cep-1 deficient worms, suggesting that the mitogen-activated protein kinase (MAPK) signaling cascade was essential for BDE-47-induced germ cell apoptosis and p53/cep-1 was not required. Moreover, the apoptosis in the strains deficient for DNA damage response was not suppressed under BDE-47 treatment. Overall, we demonstrated that BDE-47 could induce oxidative stress and subsequent germ cell apoptosis in Caenorhabditis elegans through a MAPK-mediated p53-independent pathway.
Mostrar más [+] Menos [-]Are there fitness costs of adaptive pyrethroid resistance in the amphipod, Hyalella azteca?
2018
Heim, Jennifer R. | Weston, Donald P. | Major, Kaley | Poynton, Helen | Huff Hartz, Kara E. | Lydy, Michael J.
Pyrethroid-resistant Hyalella azteca with voltage-gated sodium channel mutations have been identified at multiple locations throughout California. In December 2013, H. azteca were collected from Mosher Slough in Stockton, CA, USA, a site with reported pyrethroid (primarily bifenthrin and cyfluthrin) sediment concentrations approximately twice the 10-d LC50 for laboratory-cultured H. azteca. These H. azteca were shipped to Southern Illinois University Carbondale and have been maintained in pyrethroid-free culture since collection. Even after 22 months in culture, resistant animals had approximately 53 times higher tolerance to permethrin than non-resistant laboratory-cultured H. azteca. Resistant animals held in culture also lacked the wild-type allele at the L925 locus, and had non-synonymous substitutions that resulted in either a leucine-isoleucine or leucine-valine substitution. Additionally, animals collected from the same site nearly three years later were again resistant to the pyrethroid permethrin. When resistant animals were compared to non-resistant animals, they showed lower reproductive capacity, lower upper thermal tolerance, and the data suggested greater sensitivity to, 4, 4′-dichlorodiphenyltrichloroethane (DDT), copper (II) sulfate, and sodium chloride. Further testing of the greater heat and sodium chloride sensitivity of the resistant animals showed these effects to be unrelated to clade association. Fitness costs associated with resistance to pyrethroids are well documented in pest species (including mosquitoes, peach-potato aphids, and codling moths) and we believe that H. azteca collected from Mosher Slough also have fitness costs associated with the developed resistance.
Mostrar más [+] Menos [-]Microevolution due to pollution in amphibians: A review on the genetic erosion hypothesis
2015
The loss of genetic diversity, due to exposure to chemical contamination (genetic erosion), is a major threat to population viability. Genetic erosion is the loss of genetic variation: the loss of alleles determining the value of a specific trait or set of traits. Almost a third of the known amphibian species is considered to be endangered and a decrease of genetic variability can push them to the verge of extinction. This review indicates that loss of genetic variation due to chemical contamination has effects on: 1) fitness, 2) environmental plasticity, 3) co-tolerance mechanisms, 4) trade-off mechanisms, and 5) tolerance to pathogens in amphibian populations.
Mostrar más [+] Menos [-]Polycyclic aromatic hydrocarbons exposure and their joint effects with age, smoking, and TCL1A variants on mosaic loss of chromosome Y among coke-oven workers
2020
Liu, Yuhang | Bai, Yansen | Wu, Xiulong | Li, Guyanan | Wei, Wei | Fu, Wenshan | Wang, Gege | Feng, Yue | Meng, Hua | Li, Hang | Li, Mengying | Guan, Xin | Zhang, Xiaomin | He, Meian | Wu, Tangchun | Kwok, Woon
Mosaic loss of chromosome Y (mLOY) is the most common structure somatic event that related to increased risks of various diseases and mortality. Environmental pollution and genetic susceptibility were important contributors to mLOY. We aimed to explore the associations of polycyclic aromatic hydrocarbons (PAHs) exposure, as well as their joint effects with age, smoking, and genetic variants on peripheral blood mLOY. A total of 1005 male coke-oven workers were included in this study and their internal PAHs exposure levels of 10 urinary PAH metabolites and plasma benzo[a]pyrene-r-7,t-8,t-9,c-10-tetrahydotetrol-albumin (BPDE-Alb) adducts were measured. mLOY was defined by the median log R ratio(mLRR) of 1480 probes in male-specific region of chromosome-Y from genotyping array. We found that the PAHs exposure levels were linearly associated with mLOY. A 10-fold increase in urinary 1-hydroxynaphthalene (1-OHNa), 1-hydroxyphenanthrene (1-OHPh), 2-OHPh, 1-hydroxypyrene (1-OHP), ΣOH-PAHs, and plasma BPDE-Alb adducts could generate 0.0111, 0.0085, 0.0069, 0.0103, 0.0134, and 0.0152 decrease in mLRR-Y, respectively. Additionally, mLOY accelerated with age, smoking pack-years, and TCL1A rs1122138-C allele, and we observed the most severe mLOY among subjects carrying more than 3 of the above risk factors. Our results revealed the linear dose-effect associations between PAHs exposure and mLOY. Elder male smokers carrying rs1122138CC genotype were the most susceptible subpopulations to mLOY, who should be given protections for PAHs exposure induced chromosome-Y aberration.
Mostrar más [+] Menos [-]Isozyme markers associated with O3 tolerance indicate shift in genetic structure of ponderosa and Jeffrey pine in Sequoia National Park, California
2007
Staszak, J. | Grulke, N.E. | Marrett, M.J. | Prus-Glowacki, W.
Effects of canopy ozone (O3) exposure and signatures of genetic structure using isozyme markers associated with O3 tolerance were analyzed in 20-, 80-, and >200-yr-old ponderosa (Pinus ponderosa Dougl. ex Laws.) and Jeffrey pine (Pinus jeffreyi Grev. & Balf.) in Sequoia National Park, California. For both species, the number of alleles and genotypes per loci was higher in parental trees relative to saplings. In ponderosa pine, the heterozygosity value increased, and the fixation index indicated reduction of homozygosity with increasing tree age class. The opposite tendencies were observed for Jeffrey pine. Utilizing canopy attributes known to be responsive to O3 exposure, ponderosa pine was more symptomatic than Jeffrey pine, and saplings were more symptomatic than old growth trees. We suggest that these trends are related to differing sensitivity of the two species to O3 exposure, and to higher O3 exposures and drought stress that younger trees may have experienced during germination and establishment. Genetic variation in isozyme markers associated with ozone tolerance differed between parental trees and their progeny in two closely related species of yellow pine.
Mostrar más [+] Menos [-]Genetic diversity of the giant tiger prawn Penaeus monodon in relation to trace metal pollution at the Tanzanian coast
2017
Rumisha, Cyrus | Leermakers, Martine | Elskens, Marc | Mdegela, Robinson H. | Gwakisa, Paul | Kochzius, Marc
The genetic diversity of giant tiger prawns in relation to trace metals (TMs) pollution was analysed using 159 individuals from eight sites at the Tanzanian coast. The seven microsatellites analysed showed high degree of polymorphism (4–44 alleles). The measured genetic diversity (Ho=0.592±0.047) was comparable to that of populations in the Western Indian Ocean. Apart from that, correlation analysis revealed significant negative associations between genetic diversity and TMs pollution (p<0.05), supporting the genetic erosion hypothesis. Limited gene flow was indicated by a significant genetic differentiation (FST=0.059, p<0.05). The Mantel test rejected the isolation-by-distance hypothesis, but revealed that gene flow along the Tanzanian coast is limited by TMs pollution. This suggests that TMs affect larvae settlement and it may account for the measured deficiency of heterozygosity. This calls for strengthened pollution control measures in order to conserve this commercially important species.
Mostrar más [+] Menos [-]Oil induces chlorophyll deficient propagules in mangroves
2020
Veldkornet, Dimitri | Rajkaran, Anusha | Paul, Swapan | Naidoo, Gonasageran
In Australia, some trees of the mangrove, Avicennia marina, growing in a chronic oil polluted site, produce chlorophyll deficient (albino) propagules. We tested the hypothesis that albinism was due to an oil-induced mutant allele that controls photosynthesis. We determined whether there are genetic differences between normal and chlorophyll deficient propagules. Four gene regions (nuclear 18S–26S cistron; chloroplast - trnH-psbA, rsp16 and matK) were sequenced and analysed for normal and albino propagules. Mutations occurred in both nuclear (ITS) and coding chloroplast (matK) genes of albino propagules. There were 10 mutational differences between normal and albino propagules in the matK samples. Analysis of molecular variation (AMOVA) of the matK dataset indicated highly significant genetic differentiation between normal and albino propagules. Our study suggests for the first time that PAHs from a chronic oil polluted site resulted in mutations in both nuclear and chloroplast genes, resulting in the production of albino propagules.
Mostrar más [+] Menos [-]Impact of mannose-binding lectin gene polymorphism on lung functions among workers exposed to airborne Aspergillus in a wastewater treatment plant in Egypt
2022
Saad-Hussein, Amal | Moubarz, Gehan | Mahdy-Abdallah, Heba | Helmy, Mona Adel
In this study, the risk of Aspergillus (Asp.) positivity and its respiratory health impacts on wastewater treatment plant (WWTP) workers were studied. In addition, it identified the geno-susceptibility role of mannose-binding lectin 2 (MBL2) gene polymorphisms and the mannose-binding lectin (MBL) serum levels on the pulmonary functions of the Asp.-positive workers. Pulmonary function tests (PFTs) were performed for 89 workers from a selected WWTP, after exclusion of the smokers. Molecular identification of Asp. blood positivity was done by 18S rRNA sequencing. Determination of MBL2 gene polymorphism and estimation of MBL serum levels were done. PFTs revealed abnormalities in 49.2% of the workers. Asp. was positive in 42.5% of the workers with different species. Among the Asp.-positive workers, 6.5% of the workers were with obstructive PFTs, 12.9% with restriction, and 22.6% with combined PFT abnormalities. MBL2 genotyping showed that wild genotype AA was common (68.5%) among Asp.-positive workers compared to the other genotypes. This allele, whether homozygous or heterozygous, was significantly associated with decline in PFTs of the exposed workers. MBL serum levels were significantly lower in workers with obstructive, restrictive, and combined PFT abnormalities compared to those with normal PFTs, and in the workers with Asp.-positive species than the Asp.-negative workers. Moreover, it was significantly lower in workers with Asp. fumigatus compared to that in the workers with other Asp. species, and in the Asp.-positive workers with homozygous or heterozygous A allele compared to that in the Asp.-positive workers with homozygous B allele. Working in a WWTP can be associated with impaired PFTs due to exposure to airborne fungi. MBL2 genotyping showed that Asp.-positive workers with homozygous or heterozygous A allele were at risk to develop decline in their PFTs.
Mostrar más [+] Menos [-]Alteration in antioxidant status in slow and fast alleles of EPHX1 gene polymorphisms among wood workers
2021
Occupational wood dust exposure may be associated with various health effects, especially in wood industry. These effects may be due to inducing oxidative stress which is related to inflammations. Biochemical assessment of antioxidant enzyme activities illustrated role of oxidative stress (OS) on its depletion. Super oxide dismutase, glutathione peroxidase (GPx) and catalase (CAT) were analyzed in 50 exposed workers and 50 control subjects. Also, macrophage inflammatory protein-2 was assessed among these workers as it was produced upon dust exposure. Microsomal epoxide hydrolase (EPHX1) enzyme shared in the protective mechanism against wood dust oxidative stress. It plays a dual role in the metabolism of environmental pollutants, detoxification, and bioactivation. Gene polymorphisms of EPHX1 may be associated with variations in enzyme activity. Polymorphisms in exons 3 and 4 have resulted in either decreased (slow conjugating allele) or increased (fast conjugating allele) activity in vitro. We aimed to evaluate the associations between EPHX1 polymorphisms and change in antioxidant status (SOD, CAT, and GPx) among wood dust exposed workers. EPHX1 genotyping in exon 3 and exon 4 polymorphisms was carried out by PCR-RFLP. Our result shows a significant reduction in enzymatic antioxidants (SOD, CAT, and GPx) levels with significant rise in MIP-2 levels in worker group. Also, there are significant variations in SOD, CAT, and GPx levels as well as in MIP-2 in different genotypes of EPHX polymorphisms in exon 3 or 4 (specially in Hist-Hist genotypes in both exons). We can conclude an alteration in antioxidant status in both slow and fast allele of EPHX gene polymorphisms with release of MIP-2 protein in wood workers.
Mostrar más [+] Menos [-]The correlation between single nucleotide polymorphisms of the thymic stromal lymphopoietin receptor and breast cancer in a cohort of female patients in Saudi Arabia
2021
Semlali, Abdelhabib | Almutairi, Mikhlid H. | Alharbi, Sultan N. | Alamri, Abdullah M. | Alrefaei, Abdulwahed F. | Almutairi, Bader O. | Rouabhia, Mahmoud
The current study aimed to examine thymic stromal lymphopoietin receptor (TSLPR) genetic variation and breast cancer (BC) susceptibility in women in Saudi Arabia. Therefore, 127 blood samples from female patients diagnosed with BC and 116 blood samples from healthy female controls were studied using a genotyping assay to determine the association between three TSLPR single nucleotide polymorphisms (SNPs)—P196L, X201W, and A238V—and the risk of BC progression. In addition, gene expression was evaluated in 20 matching BC and normal tissues using immunohistochemistry. TSLPR protein levels were higher among BC patients than those with matching normal breast tissue. In addition, TSLPR SNP P196L was found to have a significant protective effect on BC progression (OR = 0.4427), although only the T allele for TSLPR P196L had this protective effect against BC progression in participants who were younger than 48 years old. In contrast, no association was found between the T allele and risk of BC in participants who were older than 48 years old, and the CT and TT genotypes were significantly associated with BC risk protection in the older group. The effects of the TT genotype and the T allele were closely associated with a decreased risk of BC in participants with estrogen receptors (ER+) and without them (ER−). Overall, the findings revealed a significant correlation between SNPs in the TSLPR genes and BC progression among women in Saudi Arabia.
Mostrar más [+] Menos [-]